ALIZE 3.0-Open Source Toolkit for State-of-the-Art Speaker Recognition

Abstract : ALIZE is an open-source platform for speaker recognition. The ALIZE library implements a low-level statistical engine based on the well-known Gaussian mixture modelling. The toolkit includes a set of high level tools dedicated to speaker recognition based on the latest developments in speaker recognition such as Joint Factor Analysis, Support Vector Machine, i-vector modelling and Probabilistic Linear Discriminant Analysis. Since 2005, the performance of ALIZE has been demonstrated in series of Speaker Recognition Evaluations (SREs) conducted by NIST and has been used by many participants in the last NIST-SRE 2012. This paper presents the latest version of the corpus and performance on the NIST-SRE 2010 extended task.
Type de document :
Communication dans un congrès
Annual Conference of the International Speech Communication Association, Aug 2013, Lyon, France
Liste complète des métadonnées

https://hal.archives-ouvertes.fr/hal-01927586
Contributeur : Anthony Larcher <>
Soumis le : lundi 19 novembre 2018 - 23:53:21
Dernière modification le : vendredi 22 mars 2019 - 11:34:07
Document(s) archivé(s) le : mercredi 20 février 2019 - 16:13:23

Fichier

ALIZE.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

  • HAL Id : hal-01927586, version 1

Collections

Citation

Anthony Larcher, Jean-François Bonastre, Benoît Fauve, Kong Lee, Christophe Levy, et al.. ALIZE 3.0-Open Source Toolkit for State-of-the-Art Speaker Recognition. Annual Conference of the International Speech Communication Association, Aug 2013, Lyon, France. 〈hal-01927586〉

Partager

Métriques

Consultations de la notice

18

Téléchargements de fichiers

29