Majorize-Minimize Adapted Metropolis-Hastings Algorithm

Abstract : The dimension and the complexity of inference problems have dramatically increased in statistical signal processing. It thus becomes mandatory to design improved proposal schemes in Metropolis-Hastings algorithms, providing large proposal transitions that are accepted with high probability. The proposal density should ideally provide an accurate approximation of the target density with a low computational cost. In this paper, we derive a novel Metropolis-Hastings proposal, inspired from Langevin dynamics, where the drift term is preconditioned by an adaptive matrix constructed through a Majorization-Minimization strategy. We propose several variants of low-complexity curvature metrics applicable to large scale problems. We demonstrate the geometric ergodicity of the resulting chain for the class of super-exponential distributions. The proposed method is shown to exhibit a good performance in two signal recovery examples.
Type de document :
Pré-publication, Document de travail
Liste complète des métadonnées

Littérature citée [20 références]  Voir  Masquer  Télécharger
Contributeur : Emilie Chouzenoux <>
Soumis le : mardi 30 octobre 2018 - 20:29:00
Dernière modification le : mardi 5 février 2019 - 13:52:14


Fichiers produits par l'(les) auteur(s)


  • HAL Id : hal-01909153, version 1


Yosra Marnissi, Emilie Chouzenoux, Amel Benazza-Benyahia, Jean-Christophe Pesquet. Majorize-Minimize Adapted Metropolis-Hastings Algorithm. 2018. 〈hal-01909153〉



Consultations de la notice


Téléchargements de fichiers