Of Kernels and Queues: when network calculus meets analytic combinatorics

Abstract : Stochastic network calculus is a tool for computing error bounds on the performance of queueing systems. However, deriving accurate bounds for networks consisting of several queues or subject to non-independent traffic inputs is challenging. In this paper, we investigate the relevance of the tools from analytic combinatorics, especially the kernel method, to tackle this problem. Applying the kernel method allows us to compute the generating functions of the queue state distributions in the stationary regime of the network. As a consequence, error bounds with an arbitrary precision can be computed. In this preliminary work, we focus on simple examples which are representative of the difficulties that the kernel method allows us to overcome.
Type de document :
Communication dans un congrès
NetCal 2018, Sep 2018, Vienne, Austria
Liste complète des métadonnées

Littérature citée [15 références]  Voir  Masquer  Télécharger

https://hal.archives-ouvertes.fr/hal-01889101
Contributeur : Céline Comte <>
Soumis le : mardi 9 octobre 2018 - 09:10:54
Dernière modification le : dimanche 14 octobre 2018 - 01:01:00

Fichiers

paper.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

  • HAL Id : hal-01889101, version 1
  • ARXIV : 1810.04875

Collections

Citation

Anne Bouillard, Céline Comte, Élie De Panafieu, Fabien Mathieu. Of Kernels and Queues: when network calculus meets analytic combinatorics. NetCal 2018, Sep 2018, Vienne, Austria. 〈hal-01889101〉

Partager

Métriques

Consultations de la notice

22

Téléchargements de fichiers

18