On bounded pseudodifferential operators in a high-dimensional setting

L. Amour 1 L. Jager J. Nourrigat 2
1 CIR
LISSI - Laboratoire Images, Signaux et Systèmes Intelligents
Abstract : This work is concerned with extending the results of Calderón and Vaillancourt proving the boundedness of Weyl pseudodifferential operators Op W eyl h (F) in L 2 (R n). We state conditions under which the norm of such operators has an upper bound independent of n. To this aim, we apply a decomposition of the identity to the symbol F , thus obtaining a sum of operators of a hybrid type, each of them behaving as a Weyl operator with respect to some of the variables and as an anti-Wick operator with respect to the other ones. Then we establish upper bounds for these auxiliary operators, using suitably adapted classical methods like coherent states.
Type de document :
Article dans une revue
Proceedings of the American Mathematical Society, American Mathematical Society, 2015, 143 (5), pp.2057 - 2068. 〈10.1090/S0002-9939-2014-12379-3〉
Liste complète des métadonnées

https://hal.archives-ouvertes.fr/hal-01881704
Contributeur : Lisette Jager <>
Soumis le : mercredi 26 septembre 2018 - 11:17:13
Dernière modification le : mercredi 3 octobre 2018 - 01:15:30

Fichier

on-bounded-pseudos-AJN-AMS-Lat...
Fichiers produits par l'(les) auteur(s)

Identifiants

Collections

Citation

L. Amour, L. Jager, J. Nourrigat. On bounded pseudodifferential operators in a high-dimensional setting. Proceedings of the American Mathematical Society, American Mathematical Society, 2015, 143 (5), pp.2057 - 2068. 〈10.1090/S0002-9939-2014-12379-3〉. 〈hal-01881704〉

Partager

Métriques

Consultations de la notice

3

Téléchargements de fichiers

4