H. Porwal, S. Grasso, and M. J. Reece, Review of grapheneeceramic matrix composites, Adv. Appl. Ceram, vol.112, pp.443-454, 2013.

A. Nieto, A. Bisht, D. Lahiri, C. Zhang, and A. Agarwal, Graphene reinforced metal and ceramic matrix composites: a review, Int. Mater. Rev, vol.62, pp.241-302, 2017.
DOI : 10.1080/09506608.2016.1219481

P. Miranzo, M. Belmonte, and M. I. Osendi, From bulk to cellular structures: a review on ceramic/graphene filler composites, J. Eur. Ceram. Soc, vol.37, pp.3649-3672, 2017.
DOI : 10.1016/j.jeurceramsoc.2017.03.016

K. Markandan, J. K. Chin, and M. T. Tan, Recent progress in graphene based ceramic composites: a review, J. Mater. Res, vol.32, 2017.
DOI : 10.1557/jmr.2016.390

URL : https://www.cambridge.org/core/services/aop-cambridge-core/content/view/995CEC5641BE9271D491A79F3C6C312C/S0884291416003903a.pdf/div-class-title-recent-progress-in-graphene-based-ceramic-composites-a-review-div.pdf

G. B. Yadhukulakrishnan, S. Karumuri, A. Rahman, R. P. Singh, A. Kaan-kalkan et al., Spark plasma sintering of graphene reinforced zirconium diboride ultra-high temperature ceramic composites, Ceram. Int, vol.39, pp.6637-6646, 2013.
DOI : 10.1016/j.ceramint.2013.01.101

Y. Tan, H. Zhang, and S. Peng, Electrically conductive graphene nanoplatelet/boron carbide composites with high hardness and toughness, Scripta Mater, vol.114, pp.98-102, 2016.
DOI : 10.1016/j.scriptamat.2015.12.008

K. Pereira-dos-santos-tonello, E. Padovano, C. Badini, S. Biamino, M. Pavese et al., Fabrication and characterization of laminated SiC composites reinforced with graphene nanoplatelets, Mater. Sci. Eng., A, vol.659, pp.158-164, 2016.

M. Belmonte, A. Nistal, P. Boutbien, B. Rom-an-manso, M. I. Osendi et al., Toughened and strengthened silicon carbide ceramics by adding graphenebased fillers, Scripta Mater, vol.113, pp.127-130, 2016.
DOI : 10.1016/j.scriptamat.2015.10.023

Q. Li, Y. Zhang, H. Gong, H. Sun, T. Li et al., Effects of graphene on the thermal conductivity of pressureless-sintered SiC ceramics, Ceram. Int, vol.41, pp.13547-13552, 2015.

B. Rom-an-manso, E. Domingues, F. M. Figueiredo, M. Belmonte, and P. Miranzo, Enhanced electrical conductivity of silicon carbide ceramics by addition of graphene nanoplatelets, J. Eur. Ceram. Soc, vol.35, pp.2723-2731, 2015.

X. Liu, J. Li, X. Yu, H. Fan, Q. Wang et al., Graphene nanosheet/titanium carbide composites of a fine-grained structure and improved mechanical properties, Ceram. Int, vol.42, pp.165-172, 2016.
DOI : 10.1016/j.ceramint.2015.08.071

D. Lahiri, E. Khaleghi, S. R. Bakshi, W. Li, E. A. Olevsky et al., Grapheneinduced strengthening in spark plasma sintered tantalum carbideenanotube composite, Scripta Mater, vol.68, pp.285-288, 2013.
DOI : 10.1016/j.scriptamat.2012.10.043

A. Nieto, D. Lahiri, and A. Agarwal, Nanodynamic mechanical behavior of graphene nanoplatelet-reinforced tantalum carbide, Scripta Mater, vol.69, pp.678-681, 2013.
DOI : 10.1016/j.scriptamat.2013.07.030

H. Xia, X. Zhang, Z. Shi, C. Zhao, Y. Li et al., Mechanical and thermal properties of reduced graphene oxide reinforced aluminum nitride ceramic composites, Mater. Sci. Eng., A, vol.639, pp.29-36, 2015.
DOI : 10.1016/j.msea.2015.04.091

P. Rutkowski, D. Kata, K. Jankowski, and W. Piekarczyk, Thermal properties of hotpressed aluminum nitrideegraphene composites, J. Therm. Anal. Calorim, vol.124, pp.93-100, 2016.

C. Yun, Y. Feng, T. Qiu, J. Yang, X. Li et al., Mechanical, electrical, and thermal properties of graphene nanosheet/aluminum nitride composites, Ceram. Int, vol.41, pp.8643-8649, 2015.
DOI : 10.1016/j.ceramint.2015.03.075

S. Baskut, A. Cinar, and S. Turan, Directional properties and microstructures of spark plasma sintered aluminum nitride containing graphene platelets, J. Eur. Ceram. Soc, vol.37, pp.3759-3772, 2017.
DOI : 10.1016/j.jeurceramsoc.2017.03.032

L. S. Walker, V. R. Marotto, M. A. Rafiee, N. Koratkar, and E. L. Corral, Toughening in graphene ceramic composites, ACS Nano, vol.5, 2011.
DOI : 10.1021/nn200319d

L. Kvetkov-a, A. Duszov-a, P. Hvizdo-s, J. Dusza, P. Kun et al., Fracture toughness and toughening mechanisms in graphene platelet reinforced Si 3 N 4 composites, Scripta Mater, vol.66, 2012.

P. Kun, O. Tapaszt-o, F. Eber, and C. , Bal azsi, Determination of structural and mechanical properties of multilayer graphene added silicon nitride-based composites, Ceram. Int, vol.38, pp.211-216, 2012.
DOI : 10.1016/j.ceramint.2011.06.051

P. Hvizdo-s, J. Dusza, and C. , Tribological properties of Si 3 N 4 egraphene nanocomposites, J. Eur. Ceram. Soc, vol.33, pp.2359-2364, 2013.

J. Dusza, J. Morgiel, A. Duszov-a, L. Kvetkov-a, M. Nosko et al., Microstructure and fracture toughness of Si 3 N 4 þgraphene platelet composites, J. Eur. Ceram. Soc, vol.32, 2012.

K. Kim and T. Hong, Hydrogen permeation of TiNegraphene membrane by hot press sintering (HPS) process, Solid State Ionics, vol.225, pp.699-702, 2012.

C. Chen, L. Pan, X. Li, J. Zhang, Y. Feng et al., Mechanical and thermal properties of graphene nanosheets/magnesia composites, Ceram. Int, vol.43, pp.10377-10385, 2017.

P. Rutkowski, P. Klimczyk, L. Jaworska, L. Stobierski, and A. Dubiel, Thermal properties of pressure sintered aluminaegraphene composites, J. Therm. Anal. Calorim, vol.122, 2015.

Y. Fan, L. Wang, J. Li, J. Li, S. Sun et al., Preparation and electrical properties of graphene nanosheet/Al 2 O 3 composites, Carbon, vol.48, pp.1743-1749, 2010.

Y. Fan, W. Jiang, and A. Kawasaki, Highly Conductive few-layer graphene/Al 2 O 3 nanocomposites with tunable charge carrier type, Adv. Funct. Mater, vol.22, pp.3882-3889, 2012.

Y. C. Fan, M. Estili, G. Igarashi, W. Jiang, and A. Kawasaki, The effect of homogeneously dispersed few-layer graphene on microstructure and mechanical properties of Al 2 O 3 nanocomposites, J. Eur. Ceram. Soc, vol.34, pp.443-451, 2014.

H. Porwal, P. Tatarko, S. Grasso, J. Khaliq, I. Dlouhý et al., Graphene reinforced alumina nano-composites, Carbon, vol.64, pp.359-369, 2013.

B. Lee, M. Y. Koo, S. H. Jin, K. T. Kim, and S. H. Hong, Simultaneous strengthening and toughening of reduced graphene oxide/alumina composites fabricated by molecular-level mixing process, Carbon, vol.78, pp.212-219, 2014.

I. Ahmad, M. Islam, H. S. Abdo, T. Subhani, K. A. Khalil et al., Toughening mechanisms and mechanical properties of graphene nanosheetreinforced alumina, Mater. Des, vol.88, pp.1234-1243, 2015.

X. Liu, Y. Fan, J. Li, L. Wang, and W. Jiang, Preparation and mechanical properties of graphene nanosheet reinforced alumina composites, Adv. Eng. Mater, vol.17, pp.28-35, 2015.

Y. Çelik, A. Çelik, E. Flahaut, and E. Suvaci, Anisotropic mechanical and functional properties of graphene-based alumina matrix nanocomposites, J. Eur. Ceram. Soc, vol.36, pp.2075-2086, 2016.

B. Chen, X. Liu, X. Zhao, Z. Wang, L. Wang et al., Preparation and properties of reduced graphene oxide/fused silica composites, Carbon, vol.77, pp.66-75, 2014.

S. Kwon, S. Lee, and I. Shon, Enhanced properties of nanostructured ZrO 2 egraphene composites rapidly sintered via high-frequency induction heating, Ceram. Int, vol.41, 2015.

L. Zhang, W. Liu, C. Yue, T. Zhang, P. Li et al., A tough graphene nanosheet/hydroxyapatite composite with improved in vitro biocompatibility, Carbon, vol.61, pp.105-115, 2013.

Y. Liu, Z. Dang, Y. Wang, J. Huang, and H. Li, Hydroxyapatite/graphene-nanosheet composite coatings deposited by vacuum cold spraying for biomedical applications: inherited nanostructures and enhanced properties, Carbon, vol.67, pp.250-259, 2014.

P. Wick, A. E. Louw-gaume, M. Kucki, H. F. Krug, K. Kostarelos et al., Classification framework for graphene-based materials, Angew, vol.53, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01447812

W. S. Hummers and R. E. Offeman, Preparation of graphitic oxide, J. Am. Chem. Soc, vol.80, p.1339, 1958.

E. Jimenez-cervantes-amieva, J. Opez-barroso, A. L. Martínez-hern-andez, and C. Velasco-santos, Graphene-based materials functionalization with natural polymeric biomolecules, 2016.

M. Yi and Z. Shen, A review on mechanical exfoliation for the scalable production of graphene, J. Mater. Chem. A, vol.3, pp.11700-11715, 2015.

P. Miranzo, C. Ramírez, B. Rom-an-manso, L. Garz-on, H. R. Guti-errez et al., In situ processing of electrically conducting graphene/SiC nanocomposites, J. Eur. Ceram. Soc, vol.33, pp.1665-1674, 2013.

F. Ji, Y. Li, J. Feng, D. Su, Y. Wen et al., Electrochemical performance of graphene nanosheets and ceramic composites as anodes for lithium batteries, J. Mater. Chem, vol.19, 2009.

Z. C. Eckel, C. Zhou, J. H. Martin, A. J. Jacobsen, W. B. Carter et al., Additive manufacturing of polymer-derived ceramics, Science, vol.351, 2016.
DOI : 10.1126/science.aad2688

A. Peigney, C. Laurent, F. Dobigeon, and A. Rousset, Carbon nanotubes grown in situ by a novel catalytic method, J. Mater. Res, vol.12, pp.613-615, 1997.
DOI : 10.1557/jmr.1997.0092

URL : https://hal.archives-ouvertes.fr/hal-00972028

C. Laurent, A. Peigney, E. Flahaut, and A. Rousset, Synthesis of carbon nanotubeseFeeAl 2 O 3 powders, Mater. Res. Bull, vol.35, pp.661-673, 2000.

E. Flahaut, A. Peigney, and C. Laurent, Double-walled carbon nanotubes in composite powders, J. Nanosci. Nanotechnol, vol.3, 2003.
DOI : 10.1166/jnn.2003.177

E. Flahaut, A. Peigney, W. S. Bacsa, R. R. Bacsa, and C. Laurent, CCVD synthesis of carbon nanotubes from (Mg,Co,Mo)O catalysts: influence of the proportions of cobalt and molybdenum, J. Mater. Chem, vol.14, pp.646-653, 2004.
URL : https://hal.archives-ouvertes.fr/hal-00917603

P. Coquay, E. Flahaut, E. De-grave, A. Peigney, R. E. Vandenberghe et al., Fe/Co alloys for the catalytic chemical vapor deposition synthesis of singleand double-walled carbon nanotubes (CNTs). 2. The CNT-Fe/Co-MgAl 2 O 4 system, J. Phys. Chem. B, vol.109, pp.17825-17830, 2005.

V. G. De-resende, E. De-grave, A. Cordier, A. Weibel, A. Peigney et al., Catalytic chemical vapor deposition synthesis of single-and double-walled carbon nanotubes from a-(Al 1Àx Fe x ) 2 O 3 powders and self-supported foams, Carbon, vol.47, pp.482-492, 2009.

V. G. De-resende, X. Hui, C. Laurent, A. Weibel, E. De-grave et al., Fesubstituted mullite powders for the in situ synthesis of carbon nanotubes by catalytic chemical vapor deposition, J. Phys. Chem. C, vol.113, pp.11239-11245, 2009.

A. Peigney, F. Garcia, C. Estourn-es, A. Weibel, and C. Laurent, Toughening and hardening in double-walled carbon nanotube/nanostructured magnesia composites, Carbon, vol.48, pp.1952-1960, 2010.
DOI : 10.1016/j.carbon.2010.01.063

M. H. Rümmeli, C. Kramberger, A. Grüneis, P. Ayala, T. Gemming et al., On the graphitization nature of oxides for the formation of carbon nanostructures, Chem. Mater, vol.19, pp.4105-4107, 2007.

A. G. Nasibulin, T. Koltsova, L. I. Nasibulina, I. V. Anoshkin, A. Semencha et al., A novel approach to composite preparation by direct synthesis of carbon nanomaterial on matrix or filler particles, Acta Mater, vol.61, pp.1862-1871, 2013.

M. Kogler, E. K?-ock, B. Kl?-otzer, T. Schachinger, W. Wallisch et al., High-temperature carbon deposition on oxide surfaces by CO disproportionation, J. Phys. Chem. C, vol.120, pp.1795-1807, 2016.
DOI : 10.1021/acs.jpcc.5b12210

URL : https://doi.org/10.1021/acs.jpcc.5b12210

N. Wang, Z. Yang, F. Xu, K. Thummavichai, H. Chen et al., A generic method to synthesise graphitic carbon coated nanoparticles in large scale and their derivative polymer nanocomposites, Sci. Rep, vol.7, p.11829, 2017.
DOI : 10.1038/s41598-017-12200-1

URL : https://www.nature.com/articles/s41598-017-12200-1.pdf

E. Flahaut, A. Peigney, C. Laurent, and A. Rousset, Synthesis of single-walled carbon nanotubeeCoeMgO composite powders and extraction of the nanotubes, J. Mater. Chem, vol.10, pp.249-252, 2000.

T. Bortolamiol, P. Lukanov, A. Galibert, B. Soula, P. Lonchambon et al., Double-walled carbon nanotubes: quantitative purification assessment, balance between purification and degradation and solution filling as an evidence of opening, Carbon, vol.78, pp.79-90, 2014.
DOI : 10.1016/j.carbon.2014.06.051

URL : https://hal.archives-ouvertes.fr/hal-01445549

A. C. Ferrari, J. C. Meyer, V. Scardaci, C. Casiraghi, M. Lazzeri et al., Raman spectrum of graphene and graphene layers, Phys. Rev. Lett, vol.97, p.187401, 2006.
URL : https://hal.archives-ouvertes.fr/hal-00130091

D. G. Papageorgiou, I. A. Kinloch, and R. J. Young, Graphene/elastomer nanocomposites, Carbon, vol.95, pp.460-484, 2015.

G. Tsoukleri, J. Parthenios, K. Papagelis, R. Jalil, A. C. Ferrari et al., Subjecting a graphene monolayer to tension and compression, Small, vol.5, pp.2397-2402, 2009.

T. A. Nguyen, J. Lee, D. E. Yoon, and H. Cheong, Excitation energy dependent Raman signatures of ABA-and ABC-stacked few-layer graphene, Sci. Rep, vol.4, pp.4630-4631, 2014.

P. H. Tan, Y. M. Deng, Q. Zhao, and W. C. Cheng, The intrinsic temperature effect of the Raman spectra of graphite, Appl. Phys. Lett, vol.74, pp.1818-1820, 1999.

S. Rul, F. Lef-evre-schlick, E. Capria, C. Laurent, and A. Peigney, Percolation of single-walled carbon nanotubes in ceramic matrix nanocomposites, Acta Mater, vol.52, pp.1061-1067, 2004.
URL : https://hal.archives-ouvertes.fr/hal-00917575

C. Ramírez, F. M. Figueiredo, P. Miranzo, P. Poza, and M. I. Osendi, Graphene nanoplatelet/silicon nitride composites with high electrical conductivity, Carbon, vol.50, pp.3607-3615, 2012.

A. Centeno, V. G. Rocha, B. Alonso, A. , C. F. Gutierrez-gonzalez et al., Graphene for tough and electroconductive alumina ceramics, J. Eur. Ceram. Soc, vol.33, pp.3201-3210, 2013.