Skip to Main content Skip to Navigation
Journal articles

C and N fluxes of decomposing 13C and 15N Brassica napus L.: effects of residue composition and N content

Abstract : The interactions occurring between biochemical composition and N content of crop residues while decomposing in soil, and the associated N dynamics were assessed by studying the kinetics of C and N biotransformations of different tissues of Brassica napus L. (roots, stems and pod walls). These residues were obtained by growing a rapeseed crop under low and high N nutrition, in a labeling growth chamber with enriched 13CO2 atmosphere and a 15N nutritive solution. The resulting crop residues in which the C-to-N ratio varied between 22 and 135 were homogeneously labeled with 13C and 15N. Paired labeled residues (13C15N labeled residues with unlabeled soil inorganic N; 13C14N residues with 15N labeled soil inorganic N) were used to determine net and gross fluxes of immobilization and mineralization. Decomposition was studied during laboratory incubations at 15°C, the initial soil N availability being non-limiting with regard to the rate of C decomposition. The rate of 13C mineralization from the residues was influenced by the biochemical composition of the tissues and particularly by their soluble C content. The N content of the tissues did not significantly affect the kinetics or the amount of C mineralized, except in the very short-term. Decomposition was rapid and after 168 days of incubation at 15°C, 82% of the C from the stems and pod walls and 69% from the roots at both low and high N contents had disappeared from the soil coarse fraction. Residue decomposition first resulted in net immobilization of soil mineral N for all the residues. The intensity and duration of this immobilization depended on the tissues and the N content of the residues. Compared to the control, the residues with low N content, still induced net N immobilization after 168 days (−22 to −14 mg N g−1 of added C) whereas the high N residues induced little net immobilization or mineralization, at −3 to + 4 mg N g−1 of added C at the same date. The NCSOIL model was used as a tool to calculate, by fitting simulation against the data, the gross N mineralization and immobilization fluxes and also to determine the total N fluxes involved over the 168 days of decomposition. Depending on the tissues and their N content, gross cumulative immobilization ranged from 71 to 113 mg N g−1 of added C and gross mineralization varied from 66 to 123 mg N g−1 of added C. The differences in net mineralization, observed during decomposition of the tissues with low and high N contents, were well explained by the differences between gross mineralization fluxes which were themselves attributable to the different quantities of N mineralized from the residues. The use of modeling to calculate the total gross N fluxes demonstrates that the total amount of N involved in the decomposition of crop residues is much higher than the resulting net fluxes quantified either by N balance or by 15N tracing.
Complete list of metadatas
Contributor : Bernard Nicolardot <>
Submitted on : Monday, August 27, 2018 - 3:37:02 PM
Last modification on : Friday, December 18, 2020 - 10:06:03 AM

Links full text




I. Trinsoutrot, S. Recous, Bruno Mary, Bernard Nicolardot. C and N fluxes of decomposing 13C and 15N Brassica napus L.: effects of residue composition and N content. Soil Biology and Biochemistry, Elsevier, 2000, 32 (11-12), pp.1717 - 1730. ⟨10.1016/S0038-0717(00)00090-0⟩. ⟨hal-01862669⟩



Record views