Motion Categorisation: Representing Velocity Qualitatively

Abstract : Categorising is arguably one of the first steps in cognition, because it enables high-level cognitive processing. For a similar reason, categorising is a first step—a preprocessing step—in artificial intelligence, specifically in decision-making, reasoning, and natural language processing. In this paper we categorise the motion of entities. Such categorisations, also known as qualitative representations, represent the preprocessing step for navigation problems with dynamical obstacles. As a central result, we present a general method to generate categorisations of motion based on categorisations of space. We assess its general validity by generating two categorisations of motion from two different spatial categorisations. We show examples of how the categorisations of motion describe and control trajectories. And we establish its soundness in cognitive and mathematical principles.
Type de document :
Article dans une revue
Cognitive Systems Research, Elsevier, 2018, 52, pp.117 - 131. 〈10.1016/j.cogsys.2018.06.005〉
Liste complète des métadonnées

Littérature citée [1 références]  Voir  Masquer  Télécharger

https://hal.archives-ouvertes.fr/hal-01845141
Contributeur : Alexandra Kirsch <>
Soumis le : vendredi 20 juillet 2018 - 10:45:32
Dernière modification le : jeudi 2 août 2018 - 09:30:50
Document(s) archivé(s) le : dimanche 21 octobre 2018 - 15:42:47

Fichier

purcalla18motion-preprint.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

Citation

Juan Arrufi, Alexandra Kirsch. Motion Categorisation: Representing Velocity Qualitatively. Cognitive Systems Research, Elsevier, 2018, 52, pp.117 - 131. 〈10.1016/j.cogsys.2018.06.005〉. 〈hal-01845141〉

Partager

Métriques

Consultations de la notice

8

Téléchargements de fichiers

12