An Expertise Recommender System Based on Data from an Institutional Repository (DiVA)

Abstract : Finding experts in academics is an important practical problem, e.g. recruiting reviewers for reviewing conference, journal or project submissions, partner matching for research proposals, finding relevant M. Sc. or Ph. D. supervisors etc. In this work, we discuss an expertise recommender system that is built on data extracted from the Blekinge Institute of Technology (BTH) instance of the institutional repository system DiVA. The developed prototype system is evaluated and validated on information extracted from the BTH DiVA installation, concerning thesis supervision of researchers affiliated with BTH. The extracted DiVA classification terms are used to build an ontology that conceptualizes the thesis domain supported by the university. The supervisor profiles of the tutors affiliated with the BTH are constructed based on the extracted DiVA data. These profiles can further be used to identify and recommend relevant subject thesis supervisors.
Type de document :
Communication dans un congrès
Leslie Chan; Pierre Mounier. ELPUB 2018, Jun 2018, Toronto, Canada. 〈10.4000/proceedings.elpub.2018.17〉
Liste complète des métadonnées

Littérature citée [8 références]  Voir  Masquer  Télécharger

https://hal.archives-ouvertes.fr/hal-01816680
Contributeur : Openedition Press <>
Soumis le : vendredi 15 juin 2018 - 15:28:29
Dernière modification le : mercredi 4 juillet 2018 - 09:33:04
Document(s) archivé(s) le : lundi 17 septembre 2018 - 11:57:33

Fichier

AngelovaMinela_ELPUB2018.pdf
Fichiers produits par l'(les) auteur(s)

Licence


Distributed under a Creative Commons Paternité 4.0 International License

Identifiants

Collections

Citation

Milena Angelova, Vishnu Devagiri, Veselka Boeva, Peter Linde, Niklas Lavesson. An Expertise Recommender System Based on Data from an Institutional Repository (DiVA). Leslie Chan; Pierre Mounier. ELPUB 2018, Jun 2018, Toronto, Canada. 〈10.4000/proceedings.elpub.2018.17〉. 〈hal-01816680〉

Partager

Métriques

Consultations de la notice

138

Téléchargements de fichiers

144