R. Patrick, . Amestoy, S. Iain, . Duff, L. Jean-yves et al., A fully asynchronous multifrontal solver using distributed dynamic scheduling, SIAM Journal on Matrix Analysis and Applications, vol.23, issue.1, pp.15-41, 2001.

H. Ammari, M. Asch, L. G. Bustos, V. Jugnon, and H. Kang, Transient Wave Imaging with Limited-View Data, SIAM Journal on Imaging Sciences, vol.4, issue.4, pp.1097-1121, 2011.
DOI : 10.1137/100786174

URL : http://www.cmap.polytechnique.fr/~ammari/papers/transt_limit-view-final.pdf

H. Ammari, E. Iakovleva, and D. Lesselier, A MUSIC Algorithm for Locating Small Inclusions Buried in a Half-Space from the Scattering Amplitude at a Fixed Frequency, Multiscale Modeling & Simulation, vol.3, issue.3, pp.597-628, 2005.
DOI : 10.1137/040610854

URL : https://hal.archives-ouvertes.fr/hal-00637498

H. Ammari and H. Kang, Reconstruction of small inhomogeneities from boundary measurements, 2004.
DOI : 10.1007/b98245

X. Antoine, K. Ramdani, and B. Thierry, Wide Frequency Band Numerical Approaches for Multiple Scattering Problems by Disks, Journal of Algorithms & Computational Technology, vol.6, issue.2, pp.241-259, 2012.
DOI : 10.1137/0907058

URL : https://hal.archives-ouvertes.fr/hal-00644373

G. Bao, S. Hou, and P. Li, Inverse scattering by a continuation method with initial guesses from a direct imaging algorithm, Journal of Computational Physics, vol.227, issue.1, pp.755-762, 2007.
DOI : 10.1016/j.jcp.2007.08.020

G. Bao, K. Huang, P. Li, and H. Zhao, A Direct Imaging Method for Inverse Scattering Using the Generalized Foldy???Lax Formulation, Contemp. Math, vol.615, pp.49-70, 2014.
DOI : 10.1090/conm/615/12264

G. Bao and P. Li, Inverse Medium Scattering Problems for Electromagnetic Waves, SIAM Journal on Applied Mathematics, vol.65, issue.6, pp.2049-2066, 2005.
DOI : 10.1137/040607435

G. Bao and P. Li, Shape reconstruction of inverse medium scattering for the Helmholtz equation. Computational methods for applied inverse problems, 2012.
DOI : 10.1515/9783110259056.283

G. Bao, P. Li, J. Lin, and F. Triki, Inverse scattering problems with multi-frequencies, Inverse Problems, vol.31, issue.9, p.93001, 2015.
DOI : 10.1088/0266-5611/31/9/093001

URL : https://hal.archives-ouvertes.fr/hal-01203344

G. Bao and J. Liu, Numerical Solution of Inverse Scattering Problems with Multi-experimental Limited Aperture Data, SIAM Journal on Scientific Computing, vol.25, issue.3, pp.1102-1117, 2003.
DOI : 10.1137/S1064827502409705

H. Barucq, J. Chabassier, H. Pham, and S. Tordeux, A study of the numerical robustness of single-layer method with Fourier basis for multiple obstacle scattering in homogeneous media, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01408904

J. Héì-ene-barucq, H. Chabassier, S. Pham, and . Tordeux, Numerical robustness of single-layer method with Fourier basis for multiple obstacle acoustic scattering in homogeneous media, Wave Motion, 2017.

C. Borges, A. Gillman, and L. Greengard, High Resolution Inverse Scattering in Two Dimensions Using Recursive Linearization, SIAM Journal on Imaging Sciences, vol.10, issue.2, pp.641-664, 2017.
DOI : 10.1137/16M1093562

URL : http://arxiv.org/pdf/1608.06871

C. Borges and L. Greengard, Inverse Obstacle Scattering in Two Dimensions with Multiple Frequency Data and Multiple Angles of Incidence, SIAM Journal on Imaging Sciences, vol.8, issue.1, pp.280-298, 2015.
DOI : 10.1137/140982787

M. Ovidio, L. Bucci, T. Crocco, V. Isernia, and . Pascazio, Inverse scattering problems with multifrequency data: reconstruction capabilities and solution strategies, IEEE Transactions on Geoscience and Remote Sensing, vol.38, issue.4, pp.1749-1756, 2000.

T. Bui-thanh and O. Ghattas, Analysis of the Hessian for inverse scattering problems: II. Inverse medium scattering of acoustic waves, Inverse Problems, vol.28, issue.5, p.55002, 2012.
DOI : 10.1088/0266-5611/28/5/055002

C. Bunks, M. Fatimetou, S. Saleck, G. Zaleski, and . Chavent, Multiscale seismic waveform inversion, GEOPHYSICS, vol.60, issue.5, pp.1457-1473, 1995.
DOI : 10.1190/1.1443880

F. Cakoni and D. Colton, Qualitative methods in inverse scattering theory: An introduction, 2005.

F. Cakoni, D. Jacob, and . Rezac, Direct imaging of small scatterers using reduced time dependent data, Journal of Computational Physics, vol.338, pp.371-387, 2017.
DOI : 10.1016/j.jcp.2017.02.061

D. Prasad, C. , and M. Sini, Inverse scattering by point-like scatterers in the Foldy regime, Inverse Problems, vol.28, issue.12, p.125006, 2012.

G. Chavent, Identification of functional parameters in partial differential equations, Identification of Parameters in Distributed Systems, pp.31-48, 1974.

G. Chavent, Nonlinear least squares for inverse problems: theoretical foundations and step-bystep guide for applications, 2010.
DOI : 10.1007/978-90-481-2785-6

Y. Chen, Inverse scattering via Heisenberg's uncertainty principle, Inverse Problems, vol.13, issue.2, p.253, 1997.
DOI : 10.1088/0266-5611/13/2/005

E. John, J. Dennis, and J. J. Moré, Quasi-Newton methods, motivation and theory, SIAM review, vol.19, issue.1, pp.46-89, 1977.

J. Anthony, . Devaney, A. Edwin, F. K. Marengo, and . Gruber, Time-reversal-based imaging and inverse scattering of multiply scattering point targets, The Journal of the Acoustical Society of America, vol.118, issue.5, pp.3129-3138, 2005.

F. Faucher, Contributions to seismic full waveform inversion for time harmonic wave equations: stability estimates, convergence analysis, numerical experiments involving large scale optimization algorithms, 2017.
URL : https://hal.archives-ouvertes.fr/tel-01807861

R. Fazli and M. Nakhkash, An analytical approach to estimate the number of small scatterers in 2D inverse scattering problems, Inverse Problems, vol.28, issue.7, p.75012, 2012.
DOI : 10.1088/0266-5611/28/7/075012

A. Fichtner, Full seismic waveform modelling and inversion, 2011.
DOI : 10.1007/978-3-642-15807-0

URL : https://academic.oup.com/gji/article-pdf/187/3/1604/1701986/187-3-1604.pdf

K. Firouzi, T. Butrus, and . Khuri-yakub, Localization of weak objects in reverberant fields using waveform inversion, The Journal of the Acoustical Society of America, vol.142, issue.2, pp.1088-1097, 2017.
DOI : 10.1121/1.4999047

Z. Gimbutas and L. Greengard, Fast multi-particle scattering: A hybrid solver for the Maxwell equations in microstructured materials, Journal of Computational Physics, vol.232, issue.1, pp.22-32, 2013.
DOI : 10.1016/j.jcp.2012.01.041

URL : http://arxiv.org/pdf/1104.5293

L. Greengard and V. Rokhlin, A fast algorithm for particle simulations, Journal of Computational Physics, vol.73, issue.2, pp.325-348, 1987.
DOI : 10.1016/0021-9991(87)90140-9

R. Griesmaier and C. Schmiedecke, A multifrequency MUSIC algorithm for locating small inhomogeneities in inverse scattering, Inverse Problems, vol.33, issue.3, p.35015, 2017.
DOI : 10.1088/1361-6420/aa5bf2

URL : http://arxiv.org/pdf/1607.04017

S. Gutman and M. Klibanov, TWO VERSIONS OF QUASI-NEWTON METHOD FOR MULTIDIMENSIONAL INVERSE SCATTERING PROBLEM, Journal of Computational Acoustics, vol.01, issue.02, pp.197-228, 1993.
DOI : 10.1142/S0218396X93000123

W. William, H. Hager, and . Zhang, A survey of nonlinear conjugate gradient methods, Pacific journal of Optimization, vol.2, issue.1, pp.35-58, 2006.

F. Hettlich, Fréchet derivatives in inverse obstacle scattering Inverse problems, p.371, 1995.

F. Hettlich, Frechet derivatives in inverse obstacle scattering, Inverse Problems, vol.14, issue.1, p.209, 1998.
DOI : 10.1088/0266-5611/14/1/017

K. Huang, P. Li, and H. Zhao, An efficient algorithm for the generalized Foldy???Lax formulation, Journal of Computational Physics, vol.234, pp.376-398, 2013.
DOI : 10.1016/j.jcp.2012.09.027

M. Ikehata, E. Niemi, and S. Siltanen, Inverse obstacle scattering with limitedaperture data Inverse problems and imaging, 2012.

M. Kern, Numerical Methods for Inverse Problems, 2016.
DOI : 10.1002/9781119136941

R. Kleinman and P. Berg, Two-dimensional location and shape reconstruction, Radio Science, vol.29, issue.4, pp.1157-1169, 1994.
DOI : 10.1364/AO.24.003985

E. Aleksandr, . Kolesov, V. Michael, . Klibanov, H. Loc et al., Single measurement experimental data for an inverse medium problem inverted by a multi-frequency globally convergent numerical method, Applied Numerical Mathematics, 2017.

R. Kress, Newton??s method for inverse obstacle scattering meets the method of least squares, Inverse Problems, vol.19, issue.6, p.91, 2003.
DOI : 10.1088/0266-5611/19/6/056

R. Kress, Uniqueness and numerical methods in inverse obstacle scattering, Journal of Physics: Conference Series, p.12003, 2007.
DOI : 10.1088/1742-6596/73/1/012003

URL : http://iopscience.iop.org/article/10.1088/1742-6596/73/1/012003/pdf

R. Kress and K. Lee, A second degree Newton method for an inverse obstacle scattering problem, Journal of Computational Physics, vol.230, issue.20, pp.7661-7669, 2011.
DOI : 10.1016/j.jcp.2011.06.020

R. Kress and W. Rundell, A quasi-Newton method in inverse obstacle scattering, Inverse Problems, vol.10, issue.5, p.1145, 1994.
DOI : 10.1088/0266-5611/10/5/011

R. Kress and W. Rundell, Inverse Obstacle Scattering Using Reduced Data, SIAM Journal on Applied Mathematics, vol.59, issue.2, pp.442-454, 1998.
DOI : 10.1137/S0036139997316598

URL : http://www.math.tamu.edu/~william.rundell/./scat_min.ps

J. Louis, L. Sanjoy, and K. Mitter, Optimal control of systems governed by partial differential equations, 1971.

D. Malhotra and G. Biros, Abstract, Communications in Computational Physics, vol.42, issue.03, pp.808-830, 2015.
DOI : 10.1109/8.633855

J. Jorge, . Moré, J. David, and . Thuente, Line search algorithms with guaranteed sufficient decrease, ACM Transactions on Mathematical Software (TOMS), vol.20, issue.3, pp.286-307, 1994.

D. Nguyen, V. Michael, . Klibanov, H. Loc, . Nguyen et al., Numerical solution of a coefficient inverse problem with multi-frequency experimental raw data by a globally convergent algorithm, Journal of Computational Physics, vol.345, pp.17-32, 2017.
DOI : 10.1016/j.jcp.2017.05.015

URL : http://arxiv.org/pdf/1609.03102

J. Nocedal and S. Wright, Numerical optimization, 2006.
DOI : 10.1007/b98874

S. Operto, . Miniussi, . Brossier, . Combe, . Métivier et al., Efficient 3-D frequency-domain mono-parameter full-waveform inversion of ocean-bottom cable data: application to Valhall in the visco-acoustic vertical transverse isotropic approximation, Geophysical Journal International, vol.59, issue.5, pp.1362-1391, 2015.
DOI : 10.1190/geo2014-0327.1

URL : https://hal.archives-ouvertes.fr/hal-01231019

H. Pham, F. Héì-ene-barucq, and . Faucher, Quantitative localization of small obstacles with single-layer potential fast solvers. Research report, Inria Bordeaux Sud-Ouest ; Magique 3D, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01673475

R. Potthast, Fr??chet differentiability of the solution to the acoustic Neumann scattering problem with respect to the domain, Journal of Inverse and Ill-Posed Problems, pp.67-84, 1996.
DOI : 10.1515/jiip.1996.4.1.67

R. Pratt, Seismic waveform inversion in the frequency domain, Part 1: Theory and verification in a physical scale model, GEOPHYSICS, vol.64, issue.3, pp.888-901, 1999.
DOI : 10.1190/1.1444194

R. , G. Pratt, C. Shin, and G. J. Hick, Gauss?newton and full newton methods in frequency?space seismic waveform inversion, Geophysical Journal International, vol.133, issue.2, pp.341-362, 1998.

C. Shin and Y. Ho-cha, Waveform inversion in the Laplace-Fourier domain, Geophysical Journal International, vol.51, issue.3, pp.1067-1079, 2009.
DOI : 10.1111/j.1365-246X.2009.04102.x

URL : https://academic.oup.com/gji/article-pdf/177/3/1067/6049783/177-3-1067.pdf

M. Sini and N. Thành, Regularized recursive Newton-type methods for inverse scattering problems using multifrequency measurements, ESAIM: Mathematical Modelling and Numerical Analysis, vol.49, issue.2, pp.459-480, 2015.
DOI : 10.1109/36.927455

URL : http://ricamwww.ricam.oeaw.ac.at/publications/reports/14/rep14-34.pdf

L. Sirgue and R. G. Pratt, Efficient waveform inversion and imaging: A strategy for selecting temporal frequencies, GEOPHYSICS, vol.56, issue.1, pp.231-248, 2004.
DOI : 10.1029/97JB03536

URL : http://geol.queensu.ca/people/pratt/sirguepratt2003.pdf

A. Tarantola, Inversion of seismic reflection data in the acoustic approximation, GEOPHYSICS, vol.49, issue.8, pp.1259-1266, 1984.
DOI : 10.1190/1.1441754

A. Tarantola, LINEARIZED INVERSION OF SEISMIC REFLECTION DATA*, Geophysical Prospecting, vol.20, issue.6, pp.998-1015, 1984.
DOI : 10.1190/1.1440826

B. Thierry, Analyse et simulations numériques du retournement temporel et de la diffraction multiple, 2011.

P. Van-den, . Berg, and . Kleinman, Gradient Methods in Inverse Acoustic and Electromagnetic Scattering, IMA Volumes in Mathematics and its Applications, pp.173-194, 1997.
DOI : 10.1007/978-1-4612-1962-0_10

J. Virieux and S. Operto, An overview of full-waveform inversion in exploration geophysics, GEOPHYSICS, vol.60, issue.6, pp.1-26, 2009.
DOI : 10.1190/1.1598125

URL : https://hal.archives-ouvertes.fr/hal-00457989

X. Zhang, L. Shira, . Broschat, J. Patrick, and . Flynn, A NUMERICAL STUDY OF CONJUGATE GRADIENT DIRECTIONS FOR AN ULTRASOUND INVERSE PROBLEM, Journal of Computational Acoustics, vol.16, issue.04, pp.587-604, 2004.
DOI : 10.1137/1011036

A. Zinn, On an optimisation method for the full- and the limited-aperture problem in inverse acoustic scattering for a sound-soft obstacle, Inverse Problems, vol.5, issue.2, p.239, 1989.
DOI : 10.1088/0266-5611/5/2/009