R. J. Aitken and G. N. Iuliis, On the possible origins of DNA damage in human spermatozoa, Mol. Hum. Reprod, vol.16, pp.3-13, 2010.

M. Auffan, J. Rose, M. R. Wiesner, and J. Y. Bottero, Chemical stability of metallic nanoparticles: a parameter controlling their potential cellular toxicity in vitro, Environ. Pollut. Barking Essex, issue.157, pp.1127-1133, 1987.
URL : https://hal.archives-ouvertes.fr/hal-01793984

M. Auffan, J. Rose, T. Orsiere, M. D. Meo, A. Thill et al., CeO 2 nanoparticles induce DNA damage towards human dermal fibroblasts in vitro, Nanotoxicology, vol.3, pp.161-171, 2009.
URL : https://hal.archives-ouvertes.fr/hal-01426343

N. Barkalina, C. Charalambous, C. Jones, and K. Coward, Nanotechnology in reproductive medicine: emerging applications of nanomaterials, Nanomed. Nanotechnol. Biol. Med, vol.10, pp.921-938, 2014.

A. Baumgartner, E. Cemeli, and D. Anderson, The comet assay in male reproductive toxicology, Cell Biol. Toxicol, vol.25, pp.81-98, 2009.

A. Baumgartner, M. Kurzawa-zegota, J. Laubenthal, E. Cemeli, and D. Anderson, Comet-assay parameters as rapid biomarkers of exposure to dietary/environmental compounds-an in vitro feasibility study on spermatozoa and lymphocytes, Mutat. Res. Toxicol. Environ. Mutagen, vol.743, pp.25-35, 2012.

L. Benameur, M. Auffan, M. Cassien, W. Liu, M. Culcasi et al., DNA damage and oxidative stress induced by CeO 2 nanoparticles in human dermal fibroblasts: evidence of a clastogenic effect as a mechanism of genotoxicity, Nanotoxicology, vol.9, pp.696-705, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01244022

J. L. Blum, J. Q. Xiong, C. Hoffman, and J. T. Zelikoff, Cadmium associated with inhaled cadmium oxide nanoparticles impacts fetal and neonatal development and growth, Toxicol. Sci. Off. J. Soc. Toxicol, vol.126, pp.478-486, 2012.

F. R. Cassee, E. C. Van-balen, C. Singh, D. Green, H. Muijser et al., Exposure, health and ecological effects review of engineered nanoscale cerium and cerium oxide associated with its use as a fuel additive, Crit. Rev. Toxicol, vol.41, pp.213-229, 2011.

B. Courbiere, M. Auffan, R. Rollais, V. Tassistro, A. Bonnefoy et al., Ultrastructural interactions and genotoxicity assay of cerium dioxide nanoparticles on mouse oocytes, Int. J. Mol. Sci, vol.14, pp.21613-21628, 2013.
URL : https://hal.archives-ouvertes.fr/hal-01426282

D. A. Eastmond, A. Hartwig, D. Anderson, W. A. Anwar, M. C. Cimino et al., Mutagenicity testing for chemical risk assessment: update of the WHO/IPCS harmonized scheme, Mutagenesis, vol.24, pp.341-349, 2009.

M. Ema, N. Kobayashi, M. Naya, S. Hanai, and J. Nakanishi, Reproductive and developmental toxicity studies of manufactured nanomaterials, Reprod. Toxicol, vol.30, pp.343-352, 2010.

L. Falchi, L. Bogliolo, G. Galleri, F. Ariu, M. T. Zedda et al., Cerium dioxide nanoparticles did not alter the functional and morphologic characteristics of ram sperm during short-term exposure, Theriogenology, vol.85, pp.1274-1281, 2016.

L. P. Franchi, B. B. Manshian, T. A. De-souza, S. J. Soenen, E. Y. Matsubara et al., Cyto-and genotoxic effects of metallic nanoparticles in untransformed human fibroblast, Toxicol. in Vitro, vol.29, pp.1319-1331, 2015.

F. Franzoni, R. Colognato, F. Galetta, I. Laurenza, M. Barsotti et al., An in vitro study on the free radical scavenging capacity of ergothioneine: comparison with reduced glutathione, uric acid and trolox, International Congress, vol.60, pp.453-457, 2006.

G. Gao, Y. Ze, B. Li, X. Zhao, T. Zhang et al., Ovarian dysfunction and gene-expressed characteristics of female mice caused by long-term exposure to titanium dioxide nanoparticles, J. Hazard. Mater, vol.243, pp.19-27, 2012.

L. Geraets, A. G. Oomen, J. D. Schroeter, V. A. Coleman, and F. R. Cassee, Tissue distribution of inhaled micro-and nano-sized cerium oxide particles in rats: results from a 28-day exposure study, Toxicol. Sci, vol.127, pp.463-473, 2012.

S. Giri, A. Karakoti, R. P. Graham, J. L. Maguire, C. M. Reilly et al., Nanoceria: a rare-earth nanoparticle as a novel anti-angiogenic therapeutic agent in ovarian cancer, PLoS One, vol.8, p.54578, 2013.

F. Greco, B. Courbière, J. Rose, T. Orsière, I. Sari-minodier et al., Toxicity of nanoparticles on reproduction, Gynécologie Obstétrique Fertil, vol.43, pp.49-55, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01426102

F. Greco, J. Perrin, M. Auffan, V. Tassistro, T. Orsière et al., A new approach for the oocyte genotoxicity assay: adaptation of comet assay on mouse cumulus-oocyte complexes, Lab. Anim, vol.49, pp.251-254, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01426110

N. M. Kobyliak, T. M. Falalyeyeva, O. G. Kuryk, T. V. Beregova, P. M. Bodnar et al., Antioxidative effects of cerium dioxide nanoparticles ameliorate age-related male infertility: optimistic results in rats and the review of clinical clues for integrative concept of men health and fertility, EPMA J, vol.6, p.12, 2015.

M. Krzywinski, N. Altman, and P. Blainey, Points of significance: nested designs. For studies with hierarchical noise sources, use a nested analysis of variance approach, Nat. Methods, vol.11, issue.10, pp.977-978, 2014.

S. A. Love, M. A. Maurer-jones, J. W. Thompson, Y. S. Lin, and C. L. Haynes, Assessing nanoparticle toxicity, Annu. Rev. Anal. Chem. Palo Alto Calif, vol.5, pp.181-205, 2012.

D. P. Lovell and T. Omori, Statistical issues in the use of the comet assay, Mutagenesis, vol.23, issue.3, pp.171-182, 2008.

S. Mittal and A. K. Pandey, Cerium oxide nanoparticles induced toxicity in human lung cells: role of ROS mediated DNA damage and apoptosis, Biomed. Res. Int, p.891934, 2014.

E. Moretti, G. Terzuoli, T. Renieri, F. Iacoponi, C. Castellini et al., In vitro effect of gold and silver nanoparticles on human spermatozoa, Andrologia, vol.45, pp.392-396, 2013.

A. E. Nel, L. Mädler, D. Velegol, T. Xia, E. M. Hoek et al., Understanding biophysicochemical interactions at the nano-bio interface, Nat. Mater, issue.7, pp.543-557, 2009.

, OECD's Meeting on Safety Testing of Manufactured Nanomaterials and Test Guidelines, OECD's Guidelines, 2011.

, Guideline for the Testing of Chemicals by In Vivo Mammalian Comet Assay, OECD's Guidelines, 2014.

P. L. Olive and J. P. Banáth, The comet assay: a method to measure DNA damage in individual cells, Nat. Protoc, vol.1, pp.23-29, 2006.

B. Park, K. Donaldson, R. Duffin, L. Tran, F. Kelly et al., Hazard and risk assessment of a nanoparticulate cerium oxide-based diesel fuel additive -a case study, Inhal. Toxicol, vol.20, pp.547-566, 2008.

J. M. Parry and J. Parry, Guidance on a strategy for testing of chemicals for mutagenicity, Committee on Mutagenicity of chemicals in Food, Consumer Products and the Environment, available on internet, 2000.

L. Preaubert, B. Courbiere, V. Achard, V. Tassistro, F. Greco et al., Cerium dioxide nanoparticles affect in vitro fertilization in mice, Nanotoxicology, vol.10, pp.111-117, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01426090

M. Sack, L. Alili, E. Karaman, S. Das, A. Gupta et al., Combination of conventional chemotherapeutics with redox-active cerium oxide nanoparticles -a novel aspect in cancer therapy, Mol. Cancer Ther, vol.13, pp.1740-1749, 2014.

J. A. Sergent, V. Paget, and S. Chevillard, Toxicity and genotoxicity of Nano-SiO2 on human epithelial intestinal HT-29 cell line, Ann. Occup. Hyg, vol.56, pp.622-630, 2012.

O. Söhnel and J. Garside, Precipitation, Basic Principles and Industrial Applications, p.149, 1992.

O. Spalla and B. Cabane, Growth of colloidal aggregates through polymer bridging, Colloid Polym. Sci, vol.271, pp.357-371, 1993.

C. Strobel, H. Oehring, R. Herrmann, M. Förster, A. Reller et al., Fate of cerium dioxide nanoparticles in endothelial cells: exocytosis, J. Nanopart. Res, vol.17, pp.1-14, 2015.

R. W. Tarnuzzer, J. Colon, S. Patil, and S. Seal, Vacancy engineered ceria nanostructures for protection from radiation-induced cellular damage, Nano Lett, vol.5, pp.2573-2577, 2005.

R. Tassinari, F. Cubadda, G. Moracci, F. Aureli, M. D'amato et al., Oral, short-term exposure to titanium dioxide nanoparticles in Sprague-Dawley rat: focus on reproductive and endocrine systems and spleen, Nanotoxicology, vol.8, pp.654-662, 2014.

U. Taylor, D. Tiedemann, C. Rehbock, W. A. Kues, S. Barcikowski et al., Influence of gold, silver and gold-silver alloy nanoparticles on germ cell function and embryo development, Beilstein J. Nanotechnol, vol.6, pp.651-664, 2015.

A. Thill, O. Zeyons, O. Spalla, F. Chauvat, J. Rose et al., Cytotoxicity of CeO 2 nanoparticles for Escherichia coli. Physico-chemical insight of the cytotoxicity mechanism, Environ. Sci. Technol, vol.40, pp.6151-6156, 2006.
URL : https://hal.archives-ouvertes.fr/hal-01794937

S. Verstraelen, S. Remy, E. Casals, P. De-boever, H. Witters et al., Gene expression profiles reveal distinct immunological responses of cobalt and cerium dioxide nanoparticles in two in vitro lung epithelial cell models, Toxicol. Lett, vol.228, pp.157-169, 2014.

S. J. Wiklund and E. Agurell, Aspects of design and statistical analysis in the comet assay, Mutagenesis, vol.18, pp.167-175, 2003.

, WHO Laboratory Manual for the Examination and Processing of Human Semen, 2010.

C. Xu and X. Qu, Cerium oxide nanoparticle: a remarkably versatile rare earth nanomaterial for biological applications, NPG Asia Mater, vol.6, p.90, 2014.

T. Yoisungnern, Y. J. Choi, J. Woong-han, M. Kang, J. Das et al., Internalization of silver nanoparticles into mouse spermatozoa results in poor fertilization and compromised embryo development, Sci. Rep, vol.5, p.11170, 2015.

T. Yoshida, Y. Yoshioka, K. Matsuyama, Y. Nakazato, S. Tochigi et al., Surface modification of amorphous nanosilica particles suppresses nanosilica-induced cytotoxicity, ROS generation, and DNA damage in various mammalian cells, Biochem. Biophys. Res. Commun, vol.427, pp.748-752, 2012.