Low Cost Activity Recognition Using Depth Cameras and Context Dependent Spatial Regions

Abstract : To be useful helpers for humans in domestic environments, robots should be aware of human task execution to anticipate and adequately react to human actions. Hence the field of activity recognition has become of increasing interest in the robotics community and many approaches are based on sequences of object detections or human posture recognition, requiring the environment to be equipped with loads of sensors or extremely expensive motion tracking systems. In this paper we investigate the use of inexpensive depth cameras to perform activity recognition using context dependent spatial regions with two different approaches for activity recognition: Spatio-Temporal Plan Descriptions and Hierarchical Hidden Markov Models. We evaluate both approaches in a simulated and a real-world environment, showing that reliable activity recognition is possible using a sensor setting for less than 250 $ in a spatially limited environment.
Type de document :
Communication dans un congrès
13th International Conference on Autonomous Agents and Multiagent Systems (AAMAS 2014), 2014, Paris, France. Proceedings of the 13th International Conference on Autonomous Agents and Multiagent Systems
Liste complète des métadonnées

Littérature citée [25 références]  Voir  Masquer  Télécharger

https://hal.archives-ouvertes.fr/hal-01691662
Contributeur : Alexandra Kirsch <>
Soumis le : mercredi 24 janvier 2018 - 11:17:45
Dernière modification le : jeudi 25 janvier 2018 - 11:10:04
Document(s) archivé(s) le : jeudi 24 mai 2018 - 18:32:31

Fichier

karg14lowcost-long-preprint.pd...
Fichiers produits par l'(les) auteur(s)

Identifiants

  • HAL Id : hal-01691662, version 1

Citation

Michael Karg, Alexandra Kirsch. Low Cost Activity Recognition Using Depth Cameras and Context Dependent Spatial Regions. 13th International Conference on Autonomous Agents and Multiagent Systems (AAMAS 2014), 2014, Paris, France. Proceedings of the 13th International Conference on Autonomous Agents and Multiagent Systems. 〈hal-01691662〉

Partager

Métriques

Consultations de la notice

19

Téléchargements de fichiers

8