A New Beam Loss Monitor Concept Based on Fast Neutron Detection and Very Low Photon Sensitivity - Archive ouverte HAL Accéder directement au contenu
Communication Dans Un Congrès Année : 2017

A New Beam Loss Monitor Concept Based on Fast Neutron Detection and Very Low Photon Sensitivity

Résumé

Superconductive accelerators may emit X-rays and Gammas mainly due to high electric fields applied on the superconductive cavity surfaces. Indeed, electron emissions will generate photons when electrons impinge on some material. Their energies depend on electron energies, which can be strongly increased by the cavity radio frequency power when it is phase-correlated with the electrons. Such photons present a real problem for Beam Loss Monitor (BLM) systems since no discrimination can be made between cavity contributions and beam loss contributions. Therefore, a new BLM is proposed which is based on gaseous Micromegas detectors, highly sensitive to fast neutrons, not to thermal ones and mostly insensitive to X-rays and Gammas. This detector uses Polyethylene for neutron moderation and the detection is achieved using a 10B or 10B4C converter film with a Micromegas gaseous amplification. Simulations show that detection efficiencies > 8 % are achievable for neutrons with energies between 1 eV and 10 MeV.
Fichier non déposé

Dates et versions

hal-01669652 , version 1 (20-12-2017)

Identifiants

Citer

Jacques Marroncle, Alain Delbart, Daniel Desforge, Caroline Lahonde-Hamdoun, Philippe Legou, et al.. A New Beam Loss Monitor Concept Based on Fast Neutron Detection and Very Low Photon Sensitivity. 5th International Beam Instrumentation Conference, Sep 2016, Barcelona, Spain. pp.TUAL02, ⟨10.18429/JACoW-IBIC2016-TUAL02⟩. ⟨hal-01669652⟩
86 Consultations
0 Téléchargements

Altmetric

Partager

Gmail Facebook X LinkedIn More