HAL will be down for maintenance from Friday, June 10 at 4pm through Monday, June 13 at 9am. More information
Skip to Main content Skip to Navigation
Conference papers

Behavior of Wireless Body-to-Body Networks Routing Strategies for Public Protection and Disaster Relief.

Abstract : Critical and public safety operations require real-time data transfer from the incident area(s) to the distant operations command center going through the evacuation and medical support areas. Any delay in communication may cause significant loss. In some cases, it is anticipated that the existing communication infrastructures can be damaged or out-of-service. It is thus required to deploy tactical ad-hoc networks to cover the operation zones. Routing data over the deployed network is a significant challenge with consideration to the operations conditions. In this paper we evaluate the performance of mutli-hop routing protocols while using different wireless technologies in an urban critical and emergency scenario. Using a realistic mobility model, Mobile Ad hoc, geographic based and data-centric routing protocols are evaluated with different communication technologies (i.e. WiFi IEEE 802.11; WSN IEEE 802.15.4; WBAN IEEE 802.15.6). It is concluded that, WiFi IEEE 802.11 is the best wireless technology with consideration to the packet reception rate and the energy consumption. Whereas, in terms of delay, WBAN IEEE 802.15.6 is the most efficient. With regards to the routing protocols, assuming that the location information is available, geographical based routing protocol with WiFi IEEE 802.11 performed much better compared to the others routing protocols. In case where the location information is unavailable, gradient based routing protocol with WBAN IEEE 802.15.6 seems the best combination.
Complete list of metadata

Cited literature [18 references]  Display  Hide  Download

Contributor : Dhafer Ben Arbia Connect in order to contact the contributor
Submitted on : Tuesday, November 28, 2017 - 7:31:30 AM
Last modification on : Thursday, February 10, 2022 - 9:56:05 AM


WIMOB - EN4PPDR 2015_Submitted...
Files produced by the author(s)


  • HAL Id : hal-01649924, version 1
  • ARXIV : 1711.10838



Dhafer Ben Arbia, Muhammad Mahtab Alam, Rabah Attia, Elyes Hamida. Behavior of Wireless Body-to-Body Networks Routing Strategies for Public Protection and Disaster Relief.. WiMob, Oct 2015, Abu Dhabi, United Arab Emirates. ⟨hal-01649924⟩



Record views


Files downloads