M. Sanchez, D. Ambard, V. Costalat, S. Mendez, F. Jourdan et al., Biomechanical Assessment of the Individual Risk of Rupture of Cerebral Aneurysms: A Proof of Concept, Annals of Biomedical Engineering, vol.28, issue.7, pp.28-40, 2013.
DOI : 10.1109/TMI.2009.2012405

URL : https://hal.archives-ouvertes.fr/hal-00737354

L. Christopher, Z. Taylor, . Yuan, R. Warren, . Selman et al., Cerebral arterial aneurysm formation and rupture in 20,767 elderly patients: hypertension and other risk factors, Journal of neurosurgery, vol.83, issue.5, pp.812-819, 1995.

D. Mohan, . Munteanu, A. Coman, and . Ciurea, Genetic factors involves in intracranial aneurysms?actualities, Journal of medicine and life, vol.8, issue.3, p.336, 2015.

A. Hoksbergen, . Fülesdi, L. Da-legemate, and . Csiba, Collateral Configuration of the Circle of Willis : Transcranial Color-Coded Duplex Ultrasonography and Comparison With Postmortem Anatomy, Stroke, vol.31, issue.6, pp.311346-1351, 2000.
DOI : 10.1161/01.STR.31.6.1346

G. Mulder, . Bogaerds, F. Rongen, and . Van-de-vosse, The influence of contrast agent injection on physiological flow in the circle of Willis, Medical Engineering & Physics, vol.33, issue.2, pp.195-203, 2011.
DOI : 10.1016/j.medengphy.2010.09.021

J. Alastruey, . Parker, . Peiró, S. Byrd, and . Sherwin, Modelling the circle of Willis to assess the effects of anatomical variations and occlusions on cerebral flows, Journal of Biomechanics, vol.40, issue.8, pp.1794-1805, 2007.
DOI : 10.1016/j.jbiomech.2006.07.008

P. Reymond, F. Merenda, F. Perren, D. Rüfenacht, and N. Stergiopulos, Validation of a one-dimensional model of the systemic arterial tree, AJP: Heart and Circulatory Physiology, vol.297, issue.1, pp.208-222, 2009.
DOI : 10.1152/ajpheart.00037.2009

M. David, . Hasan, J. Bradley, . Hindman, M. Michael et al., Pressure changes within the sac of human cerebral aneurysms in response to artificially induced transient increases in systemic blood pressurenovelty and significance, Hypertension, vol.66, issue.2, pp.324-331, 2015.

S. Ferns, . Schneiders, R. Siebes, . Van-den, . Berg et al., Intracranial Blood-Flow Velocity and Pressure Measurements Using an Intra-Arterial Dual-Sensor Guidewire, American Journal of Neuroradiology, vol.31, issue.2, pp.324-326, 2010.
DOI : 10.3174/ajnr.A1718

I. Gino, . Montecinos, O. Lucas, . Müller, F. Eleuterio et al., Hyperbolic reformulation of a 1d viscoelastic blood flow model and ader finite volume schemes, Journal of Computational Physics, vol.266, pp.101-123, 2014.

E. Boileau, P. Nithiarasu, J. Pablo, . Blanco, O. Lucas et al., A benchmark study of numerical schemes for one-dimensional arterial blood flow modelling, International Journal for Numerical Methods in Biomedical Engineering, vol.29, issue.Article ID: 156, pp.31-2015
DOI : 10.1002/cnm.2554

M. Saito, Y. Ikenaga, M. Matsukawa, Y. Watanabe, T. Asada et al., One-Dimensional Model for Propagation of a Pressure Wave in a Model of the Human Arterial Network: Comparison of Theoretical and Experimental Results, Journal of Biomechanical Engineering, vol.133, issue.12, p.133121005, 2011.
DOI : 10.1115/1.4005472

URL : https://hal.archives-ouvertes.fr/hal-01444541

S. Urquiza, . Blanco, R. Vénere, and . Feijóo, Multidimensional modelling for the carotid artery blood flow, Computer Methods in Applied Mechanics and Engineering, vol.195, issue.33-36, pp.4002-4017, 2006.
DOI : 10.1016/j.cma.2005.07.014

M. Ursino and M. Giannessi, A Model of Cerebrovascular Reactivity Including the Circle of Willis and Cortical Anastomoses, Annals of Biomedical Engineering, vol.19, issue.6, pp.955-974, 2010.
DOI : 10.1161/01.STR.14.4.552

V. Mili?i´mili?i´c and A. Quarteroni, Analysis of lumped parameter models for blood flow simulations and their relation with 1D models, ESAIM: Mathematical Modelling and Numerical Analysis, vol.38, issue.4, pp.613-632, 2004.
DOI : 10.1051/m2an:2004036

S. Pant, J. Benoit-fabrèges, I. Gerbeau, and . Vignon, A methodological paradigm for patient-specific multi-scale CFD simulations: from clinical measurements to parameter estimates for individual analysis, International Journal for Numerical Methods in Biomedical Engineering, vol.35, issue.6, pp.301614-1648, 2014.
DOI : 10.1016/j.euromechflu.2012.01.012

URL : https://hal.archives-ouvertes.fr/hal-01093879

M. Laura, . Ellwein, T. Hien, C. Tran, V. Zapata et al., Sensitivity analysis and model assessment: mathematical models for arterial blood flow and blood pressure, Cardiovascular Engineering, vol.8, issue.2, pp.94-108, 2008.

S. Pant, C. Corsini, C. Baker, . Tain-yen, G. Hsia et al., Modeling of Congenital Hearts Alliance (MOCHA) Investigators, et al. Data assimilation and modelling of patient-specific single-ventricle physiology with and without valve regurgitation, Journal of biomechanics, issue.11, pp.492162-2173, 2016.

A. Quarteroni, S. Ragni, and A. Veneziani, Coupling between lumped and distributed models for blood flow problems, Computing and Visualization in Science, vol.4, issue.2, pp.111-124, 2001.
DOI : 10.1007/s007910100063

N. Westerhof, F. Bosman, C. Vries, and A. Noordergraaf, Analog studies of the human systemic arterial tree, Journal of Biomechanics, vol.2, issue.2, pp.121-1135, 1969.
DOI : 10.1016/0021-9290(69)90024-4

J. Pablo, . Blanco, and . Feijóo, A 3d-1d-0d computational model for the entire cardiovascular system, Computational Mechanics, vol.29, pp.5887-5911, 2010.

F. Liang, K. Fukasaku, H. Liu, and S. Takagi, A computational model study of the influence of the anatomy of the circle of willis on cerebral hyperperfusion following carotid artery surgery, BioMedical Engineering OnLine, vol.10, issue.1, p.84, 2011.
DOI : 10.1016/S0950-821X(05)80252-X

E. Gao, L. William, E. Young, J. Ornstein, M. Pile-spellman et al., A Theoretical Model of Cerebral Hemodynamics: Application to the Study of Arteriovenous Malformations, Journal of Cerebral Blood Flow & Metabolism, vol.27, issue.8, pp.905-918, 1997.
DOI : 10.1227/00006123-199008000-00015

M. Olufsen, H. Tran, and J. Ottesen, Modeling cerebral blood flow control during posture change from sitting to standing. Cardiovascular engineering: an international journal, pp.47-58, 2004.
DOI : 10.1023/b:care.0000025122.46013.1a

R. Scott, . Pope, M. Laura, . Ellwein, L. Cheryl et al., Estimation and identification of parameters in a lumped cerebrovascular model, Math Biosci Eng, vol.6, issue.1, pp.93-115, 2009.

R. Chabiniok, P. Moireau, P. Lesault, A. Rahmouni, J. Deux et al., Estimation of tissue contractility from cardiac cine-MRI using a biomechanical heart model, Biomechanics and Modeling in Mechanobiology, vol.3, issue.4, pp.609-630, 2012.
DOI : 10.1109/9.989154

URL : https://hal.archives-ouvertes.fr/hal-00654541

S. Pant, C. Corsini, C. Baker, . Tain-yen, G. Hsia et al., Inverse problems in reduced order models of cardiovascular haemodynamics: aspects of data assimilation and heart rate variability, Journal of The Royal Society Interface, vol.445, issue.126, p.1420160513, 2017.
DOI : 10.1007/s00424-002-0931-9

URL : https://hal.archives-ouvertes.fr/hal-01413446

D. Lombardi, Inverse problems in 1D hemodynamics on systemic networks: A sequential approach, International Journal for Numerical Methods in Biomedical Engineering, vol.226, issue.3, pp.160-179, 2014.
DOI : 10.1016/j.jcp.2007.05.020

URL : https://hal.archives-ouvertes.fr/hal-00860080

P. Moireau, C. Bertoglio, N. Xiao, A. Figueroa, C. Taylor et al., Sequential identification of boundary support parameters in a fluid-structure vascular model using patient image data, Biomechanics and Modeling in Mechanobiology, vol.27, issue.7, pp.475-496, 2013.
DOI : 10.1002/cnm.1404

URL : https://hal.archives-ouvertes.fr/hal-00760703

R. Lal, B. Mohammadi, and F. Nicoud, Data assimilation for identification of cardiovascular network characteristics, International Journal for Numerical Methods in Biomedical Engineering, vol.4, issue.2, 2016.
DOI : 10.1371/journal.pone.0128597

URL : https://hal.archives-ouvertes.fr/hal-01359368

K. Devault, A. Pierre, V. Gremaud, . Novak, S. Mette et al., Blood Flow in the Circle of Willis: Modeling and Calibration, Multiscale Modeling & Simulation, vol.7, issue.2, pp.888-909, 2008.
DOI : 10.1137/07070231X

C. Bertoglio, P. Moireau, and J. Gerbeau, Sequential parameter estimation for fluid-structure problems: Application to hemodynamics, International Journal for Numerical Methods in Biomedical Engineering, vol.36, issue.1-2, pp.434-455, 2012.
DOI : 10.1016/S0924-7963(02)00129-X

URL : https://hal.archives-ouvertes.fr/inria-00603399

A. Caiazzo, . Caforio, . Montecinos, . Lo-muller, E. Blanco et al., Assessment of reduced-order unscented kalman filter for parameter identification in one-dimensional blood flow models using experimental data, International Journal for Numerical Methods in Biomedical Engineering, 2016.

L. Itu, P. Sharma, T. Passerini, A. Kamen, C. Suciu et al., A parameter estimation framework for patient-specific hemodynamic computations, Journal of Computational Physics, vol.281, pp.316-333, 2015.
DOI : 10.1016/j.jcp.2014.10.034

L. Dumas, T. E. Bouti, and D. Lucor, A Robust and Subject-Specific Hemodynamic Model of the Lower Limb Based on Noninvasive Arterial Measurements, Journal of Biomechanical Engineering, vol.139, issue.1, p.11002, 2017.
DOI : 10.1115/1.4034833

L. Peter, . Houtekamer, L. Herschel, and . Mitchell, Data assimilation using an ensemble kalman filter technique, Monthly Weather Review, vol.126, issue.3, pp.796-811, 1998.

Y. Tang, J. Ambandan, and D. Chen, Nonlinear measurement function in the ensemble kalman filter Advances in Atmospheric Sciences, pp.551-558, 2014.

S. Mette and . Olufsen, Structured tree outflow condition for blood flow in larger systemic arteries American journal of physiology-Heart and circulatory physiology, pp.257-268, 1999.

S. Mette, A. Olufsen, and . Nadim, On deriving lumped models for blood flow and pressure in the systemic arteries, Math Biosci Eng, vol.1, issue.1, pp.61-80, 2004.

N. Stergiopulos, T. Young, and . Rogge, Computer simulation of arterial flow with applications to arterial and aortic stenoses, Journal of Biomechanics, vol.25, issue.12, pp.1477-1488, 1992.
DOI : 10.1016/0021-9290(92)90060-E

K. Johnson, P. Sharma, and J. Oshinski, Coronary artery flow measurement using navigator echo gated phase contrast magnetic resonance velocity mapping at 3.0T, Journal of Biomechanics, vol.41, issue.3
DOI : 10.1016/j.jbiomech.2007.10.010

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2759278

M. Klarhöfer, C. Csapo, J. Balassy, E. Szeles, and . Moser, High-resolution blood flow velocity measurements in the human finger. Magnetic resonance in medicine, pp.716-719, 2001.

D. Peter, . Gatehouse, P. Marijn, K. M. Rolf, . Bloch et al., A multi-center inter-manufacturer study of the temporal stability of phase-contrast velocity mapping background offset errors, Journal of Cardiovascular Magnetic Resonance, vol.14, issue.1, p.72, 2012.

C. Tang, D. Duane, . Blatter, L. Dennis, and . Parker, Accuracy of phase-contrast flow measurements in the presence of partial-volume effects, Journal of Magnetic Resonance Imaging, vol.10, issue.2, pp.377-385, 1993.
DOI : 10.2214/ajr.155.5.2120946

D. Matthew, N. Ford, S. H. Alperin, . Lee, W. David et al., Characterization of volumetric flow rate waveforms in the normal internal carotid and vertebral arteries, Physiological Measurement, vol.26, issue.4, p.477, 2005.

V. Aram, . Chobanian, L. George, . Bakris, R. Henry et al., Seventh report of the joint national committee on prevention, detection, evaluation, and treatment of high blood pressure, Hypertension, issue.6, pp.421206-1252, 2003.