Particle-in-cell simulation of x-ray wakefield acceleration and betatron radiation in nanotubes - Archive ouverte HAL Accéder directement au contenu
Article Dans Une Revue Phys.Rev.Accel.Beams Année : 2016

Particle-in-cell simulation of x-ray wakefield acceleration and betatron radiation in nanotubes

Xiaomei Zhang
  • Fonction : Auteur
Toshiki Tajima
  • Fonction : Auteur
Deano Farinella
  • Fonction : Auteur
Youngmin Shin
  • Fonction : Auteur
Peter Taborek
  • Fonction : Auteur
Pisin Chen
  • Fonction : Auteur
Franklin Dollar
  • Fonction : Auteur
Baifei Shen
  • Fonction : Auteur

Résumé

Though wakefield acceleration in crystal channels has been previously proposed, x-ray wakefield acceleration has only recently become a realistic possibility since the invention of the single-cycled optical laser compression technique. We investigate the acceleration due to a wakefield induced by a coherent, ultrashort x-ray pulse guided by a nanoscale channel inside a solid material. By two-dimensional particle-in-cell computer simulations, we show that an acceleration gradient of TeV/cm is attainable. This is about 3 orders of magnitude stronger than that of the conventional plasma-based wakefield accelerations, which implies the possibility of an extremely compact scheme to attain ultrahigh energies. In addition to particle acceleration, this scheme can also induce the emission of high energy photons at ∼O(10–100)  MeV. Our simulations confirm such high energy photon emissions, which is in contrast with that induced by the optical laser driven wakefield scheme. In addition to this, the significantly improved emittance of the energetic electrons has been discussed.

Dates et versions

hal-01554392 , version 1 (03-07-2017)

Identifiants

Citer

Xiaomei Zhang, Toshiki Tajima, Deano Farinella, Youngmin Shin, Gerard Mourou, et al.. Particle-in-cell simulation of x-ray wakefield acceleration and betatron radiation in nanotubes. Phys.Rev.Accel.Beams, 2016, 19 (10), pp.101004. ⟨10.1103/PhysRevAccelBeams.19.101004⟩. ⟨hal-01554392⟩
99 Consultations
0 Téléchargements

Altmetric

Partager

Gmail Facebook X LinkedIn More