Supervised Morphology for Structure Tensor-Valued Images Based on Symmetric Divergence Kernels

Abstract : Mathematical morphology is a nonlinear image processing methodology based on computing min/max operators in local neighbourhoods. In the case of tensor-valued images, the space of SPD matrices should be endowed with a partial ordering and a complete lattice structure. Structure tensor describes robustly the local orientation and anisotropy of image features. Formulation of mathematical morphology operators dealing with structure tensor images is relevant for texture filtering and segmentation. This paper introduces tensor-valued mathematical morphology based on a supervised partial ordering, where the ordering mapping is formulated by means of positive definite kernels and solved by machine learning algorithms. More precisely, we focus on symmetric divergences for SPD matrices and associated kernels.
Type de document :
Communication dans un congrès
First International Conference on Geometric Science of Information (GSI'2013), Aug 2013, Paris, France. Lecture Notes in Computer Science, vol 8085, pp.543 - 550, 2013, Geometric Science of Information First International Conference, GSI 2013, Paris, France, August 28-30, 2013. Proceedings. 〈10.1007/978-3-642-40020-9_60〉
Liste complète des métadonnées

Littérature citée [21 références]  Voir  Masquer  Télécharger

https://hal-mines-paristech.archives-ouvertes.fr/hal-01536382
Contributeur : Jesus Angulo <>
Soumis le : dimanche 11 juin 2017 - 12:28:21
Dernière modification le : vendredi 27 octobre 2017 - 17:36:02

Fichier

VelascoAngulo_Tensor.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

Collections

Citation

Santiago Velasco-Forero, Jesus Angulo. Supervised Morphology for Structure Tensor-Valued Images Based on Symmetric Divergence Kernels. First International Conference on Geometric Science of Information (GSI'2013), Aug 2013, Paris, France. Lecture Notes in Computer Science, vol 8085, pp.543 - 550, 2013, Geometric Science of Information First International Conference, GSI 2013, Paris, France, August 28-30, 2013. Proceedings. 〈10.1007/978-3-642-40020-9_60〉. 〈hal-01536382〉

Partager

Métriques

Consultations de la notice

48

Téléchargements de fichiers

19