Memetic Algorithm for Computing Shortest Paths in Multimodal Transportation Networks

Abstract : Route planning in multimodal transportation networks is gaining more and more importance. Travelers ask for efficient routing methods allowing them to reach their destinations through the intricate multimodal transportation scheme. In this paper, we propose a new approach for computing multi-modal shortest paths. We only consider railway, bus and pedestrian networks. The travel time is the only metric in our cost function. Our proposed approach is a combination of two meta-heuristics: Genetic Algorithm (GA) and Variable Neighborhood Search (VNS). We compare our approach with the exact shortest path algorithm Dijikstra that has been modified to work in a multimodal environment, as well as, with a pure GA. Results have shown that the success rate of our approach in terms of converging to optimum/near optimum solutions is highly better than a pure GA. Moreover, in contrast to traditional algorithms like Dijkstra, our approach is fast enough for practical routing applications.
Type de document :
Article dans une revue
Transportation Research Procedia, Elsevier, 2015, 10, pp.745 - 755. 〈10.1016/j.trpro.2015.09.028〉
Liste complète des métadonnées

Littérature citée [30 références]  Voir  Masquer  Télécharger

https://hal.archives-ouvertes.fr/hal-01520123
Contributeur : Omar Dib <>
Soumis le : mardi 9 mai 2017 - 19:09:13
Dernière modification le : samedi 13 mai 2017 - 01:08:18
Document(s) archivé(s) le : jeudi 10 août 2017 - 13:52:07

Fichier

EWGT2015 OmarDIB - Full Paper....
Fichiers éditeurs autorisés sur une archive ouverte

Identifiants

Citation

Omar Dib, Marie-Ange Manier, Alexandre Caminada. Memetic Algorithm for Computing Shortest Paths in Multimodal Transportation Networks. Transportation Research Procedia, Elsevier, 2015, 10, pp.745 - 755. 〈10.1016/j.trpro.2015.09.028〉. 〈hal-01520123〉

Partager

Métriques

Consultations de la notice

97

Téléchargements de fichiers

228