H. Osanai, T. Shioda, T. Moriyama, S. Araki, M. Horiguchi et al., Effect of dopants on transmission loss of low-OH-content optical fibres, Electronics Letters, vol.12, issue.21, pp.549-550, 1976.
DOI : 10.1049/el:19760418

M. A. Saifi, Emerging applications of optical fibers and photonics in intelligent automobiles and highway systems, LEOS '95. IEEE Lasers and Electro-Optics Society 1995 Annual Meeting. 8th Annual Meeting. Conference Proceedings, pp.30-31, 1995.
DOI : 10.1109/LEOS.1995.484763

J. I. Peterson, G. G. Vurek, V. N. Vechkanov, A. N. Gur-'yanov, K. V. Zotov et al., Fiber-Optic sensors for biomedical applications Fabrication and optical properties of fibers with an Al 2 O 3 -P 2 O 5 -SiO 2 glass core, Science Inorg. Mater, vol.224, issue.45, pp.123-127, 1984.

M. J. Weber, Science and technology of laser glass, Journal of Non-Crystalline Solids, vol.123, issue.1-3, pp.208-222, 1990.
DOI : 10.1016/0022-3093(90)90786-L

M. E. Likhachev, M. M. Bubnov, K. V. Zotov, O. I. Medvedkov, D. S. Lipatov et al., Erbium-doped aluminophosphosilicate optical fibres, Quantum Electronics, vol.40, issue.7, pp.633-638, 2010.
DOI : 10.1070/QE2010v040n07ABEH014326

D. J. Digiovanni, J. B. Macchesney, and T. Kometani, Structure and properties of silica containing aluminum and phosphorus near the AlPO4 join, Journal of Non-Crystalline Solids, vol.113, issue.1, pp.58-64, 1989.
DOI : 10.1016/0022-3093(89)90318-9

J. E. Townsend, S. B. Poole, and D. N. Payne, Solution-doping technique for fabrication of rare-earth-doped optical fibres, Electronics Letters, vol.23, issue.7, pp.329-331, 1987.
DOI : 10.1049/el:19870244

S. R. Nagel, J. B. Macchesney, and K. L. Walker, An overview of the modified chemical vapor deposition (MCVD) process and performance, IEEE Journal of Quantum Electronics, vol.18, issue.4, pp.459-476, 1982.
DOI : 10.1109/JQE.1982.1071596

P. Barua, E. H. Sekiya, K. Saito, and A. J. Ikushima, Influences of Yb3+ ion concentration on the spectroscopic properties of silica glass, Journal of Non-Crystalline Solids, vol.354, issue.42-44, pp.4760-4764, 2008.
DOI : 10.1016/j.jnoncrysol.2008.04.020

S. B. Poole, D. N. Payne, and M. E. Fermann, Fabrication of low-loss optical fibres containing rare-earth ions, Electronics Letters, vol.21, issue.17, pp.737-738, 1985.
DOI : 10.1049/el:19850520

E. H. Sekiya, P. Barua, K. Saito, and A. J. Ikushima, Fabrication of Yb-doped silica glass through the modification of MCVD process, Journal of Non-Crystalline Solids, vol.354, issue.42-44, pp.4737-4742, 2008.
DOI : 10.1016/j.jnoncrysol.2008.04.045

S. Unger, F. Lindner, C. Aichele, M. Leich, A. Schwuchow et al., A highly efficient Yb-doped silica laser fiber prepared by gas phase doping technology. Laser Phys, p.35103, 2014.
DOI : 10.1088/1054-660x/24/3/035103

A. S. Webb, A. J. Boyland, R. J. Standish, S. Yoo, J. K. Sahu et al., MCVD in-situ solution doping process for the fabrication of complex design large core rare-earth doped fibers, Journal of Non-Crystalline Solids, vol.356, issue.18-19, pp.848-851, 2010.
DOI : 10.1016/j.jnoncrysol.2010.01.008

A. J. Boyland, A. S. Webb, M. P. Kalita, S. Yoo, C. A. Codemard et al., Rare Earth Doped Optical Fiber Fabrication Using Novel Gas Phase Deposition Technique, Conference on Lasers and Electro-Optics 2010, pp.16-21, 2010.
DOI : 10.1364/CLEO.2010.CThV7

K. Arai, H. Namikawa, K. Kumata, and T. Honda, Aluminum or phosphorus co???doping effects on the fluorescence and structural properties of neodymium???doped silica glass, Journal of Applied Physics, vol.12, issue.10, pp.3430-3436, 1986.
DOI : 10.1364/OL.5.000339

W. Blanc, V. Mauroy, L. Nguyen, B. N. Bhaktha, P. Sebbah et al., Fabrication of Rare Earth-Doped Transparent Glass Ceramic Optical Fibers by Modified Chemical Vapor Deposition, Journal of the American Ceramic Society, vol.20, issue.8, pp.2315-2318, 2010.
DOI : 10.1016/S0925-3467(02)00050-2

URL : https://hal.archives-ouvertes.fr/hal-00614303

W. Blanc, B. Dussardier, G. Monnom, R. Peretti, A. Jurdyc et al., Erbium emission properties in nanostructured fibers, Applied Optics, vol.48, issue.31, pp.119-124, 2009.
DOI : 10.1364/AO.48.00G119

URL : https://hal.archives-ouvertes.fr/hal-00429699

A. Pastouret, C. Gonnet, C. Collet, O. Cavani, E. Burov et al., Nanoparticle doping process for improved fibre amplifiers and lasers, Fiber Lasers VI: Technology, Systems, and Applications, p.71951, 2009.
DOI : 10.1117/12.808125

T. Lindstrom, E. Garber, D. Edmonson, T. Hawkins, M. Bass et al., Spectral engineering of optical fiber preforms through active nanoparticle doping, Optical Materials Express, vol.2, issue.11, pp.1520-1528, 2012.
DOI : 10.1364/OME.2.001520

M. Vermillac, H. Fneich, J. Lupi, J. Tissot, C. Kucera et al., Use of thulium-doped LaF 3 :Tm 3+ nanoparticles to lower the phonon energy of the thulium's environment in silica-based optical fibres, Opt. Mater, 2017.

J. Koponen, L. Petit, T. Kokki, V. Aallos, J. Paul et al., Progress in Direct Nanoparticle Deposition (DND) for the development of the next generation fiber lasers, Opt. Eng, pp.50-111605, 2011.

C. Ye, J. Koponen, V. Aallos, L. Petit, O. Kimmelma et al., Measuring bend losses in large-mode-area fibers, Proceedings of the SPIE 9344, Fiber Lasers XII: Technology, Systems, and Applications, p.934425, 2015.
DOI : 10.1117/12.2076813

C. Ye, J. Koponen, V. Aallos, L. Petit, O. Kimmelma et al., Mode coupling in few-mode large-mode-area fibers, Proceedings of the SPIE 8961, Fiber Lasers XI: Technology, Systems, and Applications, p.201489612, 2014.
DOI : 10.1117/12.2038575

E. M. Dianov, K. M. Golant, V. I. Karpov, R. R. Khrapko, A. S. Kurkov et al., Application of reduced-pressure plasma CVD technology to the fabrication of Er-doped optical fibers, Optical Materials, vol.3, issue.3, pp.181-185, 1994.
DOI : 10.1016/0925-3467(94)90003-5

I. A. Bufetov, K. M. Golant, S. V. Firstov, A. V. Kholodkov, A. V. Shubin et al., Bismuth activated alumosilicate optical fibers fabricated by surface-plasma chemical vapor deposition technology, Applied Optics, vol.47, issue.27, pp.4940-4944, 2008.
DOI : 10.1364/AO.47.004940

E. A. Savel-'ev and K. M. Golant, Influence of fusing on the uniformity of the distribution of Yb 3+ ions and the formation of clusters in silica with phosphorus admixture synthesized by SPCVD, Opt. Mater. Express, vol.5, pp.2337-2346, 2015.

K. M. Golant, A. P. Bazakutsa, O. V. Butov, Y. K. Chamorovskij, A. V. Lanin et al., Bismuth-activated silica-core fibres fabricated by SPCVD, 36th European Conference and Exhibition on Optical Communication, pp.9-13, 2010.
DOI : 10.1109/ECOC.2010.5621460

B. Silitec-n and @. Wo, 102947 A1 (Carlos PEDRIDO Datwyler Fiber SA) Available online: https://patentscope.wipo.int/search/en/detail, 2005.

A. Langner, M. Such, G. Schötz, V. Reichel, S. Grimm et al., Development, manufacturing and lasing behavior of Yb-doped ultra large mode area fibers based on Yb-doped fused bulk silica, Fiber Lasers VII: Technology, Systems, and Applications, p.75802, 2010.
DOI : 10.1117/12.845761

K. Wondraczek and H. Bartelt, Material and technology trends in fiber optics, Adv. Opt. Technol, vol.2014, issue.3, pp.447-468

M. Leich, F. Just, A. Langner, M. Such, G. Schötz et al., Highly efficient Yb-doped silica fibers prepared by powder sinter technology, Optics Letters, vol.36, issue.9, pp.1557-1559, 2011.
DOI : 10.1364/OL.36.001557

L. Norin, E. Vanin, P. Soininen, and M. Putkonen, Atomic Layer Deposition as a New Method for Rare-Earth Doping of Optical Fibers, 2007 Conference on Lasers and Electro-Optics (CLEO), pp.6-11, 2007.
DOI : 10.1109/CLEO.2007.4452928

M. Ponsoda, J. J. Norin, L. Ye, C. Bosund, M. Söderlund et al., Honkanen, S. Ytterbium-doped fibers fabricated with atomic layer deposition method, Opt. Express, vol.2012, pp.25085-25095

J. Wen, J. Wang, Y. Dong, N. Chen, Y. Luo et al., Photoluminescence properties of Bi/Al-codoped silica optical fiber based on atomic layer deposition method, Applied Surface Science, vol.349, pp.287-291, 2015.
DOI : 10.1016/j.apsusc.2015.04.138

A. Nadort, J. Zhao, and E. M. Goldys, Lanthanide upconversion luminescence at the nanoscale: fundamentals and optical properties, Nanoscale, vol.12, issue.27, pp.13099-13130, 2016.
DOI : 10.1021/nl300421n

J. Zhao, D. Jin, E. P. Schartner, Y. Lu, Y. Liu et al., Single-nanocrystal sensitivity achieved by enhanced upconversion luminescence, Nature Nanotechnology, vol.2, issue.10, pp.729-734, 2013.
DOI : 10.1016/j.optcom.2004.08.001

J. Wang, R. Deng, M. A. Macdonald, B. Chen, J. Yuan et al., Enhancing multiphoton upconversion through energy clustering at sublattice level, Nature Materials, vol.13, issue.2, pp.157-162, 2014.
DOI : 10.1016/j.crci.2010.03.021

URL : http://hdl.handle.net/10397/8978

B. Zhou, B. Shi, D. Jin, and X. Liu, Controlling upconversion nanocrystals for emerging applications, Nature Nanotechnology, vol.71, issue.11, pp.924-936, 2015.
DOI : 10.1103/PhysRevB.71.045115

G. Balasubramanian, I. Y. Chan, R. Kolesov, M. Hmoud, J. Tisler et al., Nanoscale imaging magnetometry with diamond spins under ambient conditions, Nature, vol.2, issue.7213, pp.648-652, 2008.
DOI : 10.1038/nature07278

URL : http://pubman.mpdl.mpg.de/pubman/item/escidoc:1033621/component/escidoc:2213879/1033621.pdf

J. M. Taylor, P. Cappellaro, L. Childress, L. Jiang, D. Budker et al., High-sensitivity diamond magnetometer with nanoscale resolution, Nature Physics, vol.21, issue.10, pp.810-816, 2008.
DOI : 10.1038/nphys1075

URL : http://arxiv.org/pdf/0805.1367

F. Dolde, H. Fedder, M. W. Doherty, T. Nöbauer, F. Rempp et al., Electric-field sensing using single diamond spins, Nature Physics, vol.7, issue.6, pp.459-463, 2011.
DOI : 10.1103/PhysRevB.83.081304

URL : http://pubman.mpdl.mpg.de/pubman/item/escidoc:2157119/component/escidoc:2157125/2157119.pdf

L. P. Mcguinness, L. T. Hall, A. Stacey, D. A. Simpson, C. D. Hill et al., Ambient nanoscale sensing with single spins using quantum decoherence, New Journal of Physics, vol.15, issue.7, p.73042, 2013.
DOI : 10.1088/1367-2630/15/7/073042

M. J. Dejneka, Transparent Oxyfluoride Glass Ceramics, MRS Bulletin, vol.36, issue.11, pp.57-62, 1998.
DOI : 10.1557/S0883769400031018

A. Herrmann, M. Tylkowski, C. Bocker, and C. Rüssel, Crystals Precipitated from an Aluminosilicate Glass: Preparation and Luminescence Properties, Chemistry of Materials, vol.25, issue.14, pp.2878-2884, 2013.
DOI : 10.1021/cm401454y

S. Xiaoying, C. Ping, C. Wenjing, Z. Kan, M. Jing et al., Fine tunable red-green upconversion luminescence from glass ceramic containing 5%Er 3+ :NaYF 4 nanocrystals under excitation of two near infrared femtosecond lasers, J. Appl. Phys, vol.116, p.63101, 2014.

V. G. Melekhin, E. V. Kolobkova, A. A. Lipovskii, V. D. Petrikov, A. M. Malyarevich et al., Fluorophosphate glasses doped with PbSe quantum dots and their nonlinear optical characteristics, Glass Physics and Chemistry, vol.33, issue.6, pp.351-355, 2008.
DOI : 10.1134/S1087659608040020

H. Masai, Y. Takahashi, and T. Fujiwara, Glass-Ceramics Containing Nano-Crystallites of Oxide Semiconductor, Ceramic Materials, vol.Sciyo, 2010.

M. Mattarelli, G. Gasperi, M. Montagna, and P. Verrocchio, Transparency and long-ranged fluctuations: The case of glass ceramics, Physical Review B, vol.47, issue.9, p.94204, 2010.
DOI : 10.1142/9789812386281

Y. Ledemi, A. Trudel, V. A. Rivera, S. Chenu, E. Veron et al., novel fluoro-phosphate transparent glass-ceramics, J. Mater. Chem. C, vol.68, issue.25, pp.5046-5056, 2014.
DOI : 10.1016/j.saa.2006.12.023

Y. Wang and J. Ohwaki, for efficient frequency upconversion, Applied Physics Letters, vol.62, issue.24, pp.3268-3270, 1993.
DOI : 10.1109/PROC.1973.9155

D. Chen, Y. Wang, Y. Yu, and P. Huang, Near-infrared quantum cutting in transparent nanostructured glass ceramics, Optics Letters, vol.33, issue.16, pp.1884-1886, 2008.
DOI : 10.1364/OL.33.001884

H. Dong, L. Sun, Y. Wang, J. Ke, R. Si et al., Efficient Tailoring of Upconversion Selectivity by Engineering Local Structure of Lanthanides in Na x REF 3+x Nanocrystals, J. Am. Chem. Soc, vol.137, pp.2015-6569

Y. Zhang, L. Zhang, R. Deng, J. Tian, Y. Zong et al., Multicolor Barcoding in a Single Upconversion Crystal, Journal of the American Chemical Society, vol.136, issue.13, pp.4893-4896, 2014.
DOI : 10.1021/ja5013646

P. Reineck and B. C. Gibson, Near-Infrared Fluorescent Nanomaterials for Bioimaging and Sensing, Advanced Optical Materials, vol.53, issue.2, 2016.
DOI : 10.1002/anie.201407420

V. N. Mochalin, O. Shenderova, D. Ho, and Y. Gogotsi, The properties and applications of nanodiamonds, Nature Nanotechnology, vol.3, issue.1, pp.11-23
DOI : 10.1126/scitranslmed.3002137

A. Jha, S. Shen, and M. Naftaly, -doped tellurite glasses, Physical Review B, vol.27, issue.10, pp.6215-6227, 2000.
DOI : 10.1049/el:19911327

G. Gao, A. Winterstein-beckmann, O. Surzhenko, C. Dubs, J. Dellith et al., Faraday rotation and photoluminescence in heavily Tb 3+ -doped GeO 2 -B 2 O 3 -Al 2 O 3 -Ga 2 O 3 glasses for fiber-integrated magneto-optics

N. Jiang, S. Zhou, D. Su, and J. Qiu, nanocrystals in glass ceramics?, physica status solidi (RRL) - Rapid Research Letters, vol.18, issue.12, pp.487-489
DOI : 10.1364/OE.18.008836

D. Pablos-martin, A. Patzig, C. Höche, T. Duran, A. Pascual et al., Distribution of thulium in Tm3+-doped oxyfluoride glasses and glass-ceramics, CrystEngComm, vol.357, issue.35, pp.6979-6985, 2013.
DOI : 10.1016/j.jnoncrysol.2010.11.024

D. Pablos-martín, A. García, M. A. Muñoz-noval, A. Castro, G. R. Pascual et al., Analysis of the distribution of Tm3+ ions in LaF3 containing transparent glass-ceramics through X-ray absorption spectroscopy, Journal of Non-Crystalline Solids, vol.384, pp.83-87, 2014.
DOI : 10.1016/j.jnoncrysol.2013.07.021

P. A. Tick, N. F. Borrelli, L. K. Cornelius, and M. A. Newhouse, Transparent glass ceramics for 1300 nm amplifier applications, Journal of Applied Physics, vol.14, issue.11, pp.6367-6374, 1995.
DOI : 10.1063/1.1701366

S. Hendy, Light scattering in transparent glass ceramics, Applied Physics Letters, vol.34, issue.7, pp.1171-1173, 2002.
DOI : 10.1103/PhysRevLett.59.668

URL : http://arxiv.org/pdf/cond-mat/0207591

C. Liu and J. Heo, Lead Chalcogenide Quantum Dot-Doped Glasses for Photonic Devices, International Journal of Applied Glass Science, vol.293, issue.295, pp.163-173
DOI : 10.1016/S0022-3093(01)00769-4

B. N. Samson, P. A. Tick, and N. Borrelli, Efficient neodymium-doped glass-ceramic fiber laser and amplifier, Optics Letters, vol.26, issue.3, pp.145-147, 2001.
DOI : 10.1364/OL.26.000145

B. N. Samson, L. R. Pinckney, J. Wang, G. H. Beall, and N. F. Borrelli, Nickel-doped nanocrystalline glass-ceramic fiber, Optics Letters, vol.27, issue.15, pp.1309-1311, 2002.
DOI : 10.1364/OL.27.001309

J. Zhao, Z. Lu, Y. Yin, C. Mcrae, J. A. Piper et al., :Yb,Er nanocrystals: role of nanocrystal size, Nanoscale, vol.18, issue.3, pp.944-952, 2013.
DOI : 10.1021/cm052885p

D. J. Gargas, E. M. Chan, A. D. Ostrowski, S. Aloni, M. V. Altoe et al., Engineering bright sub-10-nm upconverting nanocrystals for single-molecule imaging, Nature Nanotechnology, vol.8, issue.4, pp.300-305
DOI : 10.1038/nnano.2013.146

D. Liu, X. Xu, Y. Du, X. Qin, Y. Zhang et al., Three-dimensional controlled growth of monodisperse sub-50???nm heterogeneous nanocrystals, Nature Communications, vol.7, 2016.
DOI : 10.1021/nn304837c

A. M. Edmonds, M. A. Sobhan, V. K. Sreenivasan, E. A. Grebenik, J. R. Rabeau et al., Nano-Ruby: A Promising Fluorescent Probe for Background-Free Cellular Imaging, Particle & Particle Systems Characterization, vol.48, issue.49, pp.506-513
DOI : 10.1016/0022-2313(91)90147-N

M. Gajc, H. B. Surma, A. Klos, K. Sadecka, K. Orlinski et al., Nanoparticle Direct Doping: Novel Method for Manufacturing Three-Dimensional Bulk Plasmonic Nanocomposites, Advanced Functional Materials, vol.94, issue.27, pp.3443-3451, 2013.
DOI : 10.1016/j.solmat.2010.02.046

E. V. Karaksina, V. S. Shiryaev, and L. A. Ketkova, Preparation of composite materials for fiber optics based on chalcogenide glasses containing ZnS(ZnSe):Cr(2+) crystals, Journal of Non-Crystalline Solids, vol.377, pp.220-224, 2013.
DOI : 10.1016/j.jnoncrysol.2012.12.021

Y. Zhou, D. Chen, W. Tian, and Z. Ji, Impact of Eu 3+ Dopants on Optical Spectroscopy of Ce 3+ :Y 3 Al 5 O 12 - Embedded Transparent Glass-Ceramics, J. Am. Ceram. Soc, vol.2015, pp.2445-2450

J. Huang, X. Hu, J. Shen, D. Wu, C. Yin et al., phosphor-in-glass for white LEDs, CrystEngComm, vol.40, issue.37, pp.7079-7085, 2015.
DOI : 10.1038/ncomms5312

G. Chai, G. Dong, J. Qiu, and Q. Zhang, Yang, Z. 2.7 µm Emission from Transparent Er 3+ ,Tm 3+ Codoped Yttrium Aluminum Garnet (Y 3 Al 5 O 12 ) Nanocrystals?Tellurate Glass Composites by Novel Comelting Technology, J. Phys. Chem. C, vol.116, 2012.

J. Massera, M. Gaussiran, P. G?uchowski, M. Lastusaari, L. C. Rodrigues et al., Effect of the glass melting condition on the processing of phosphate-based glass???ceramics with persistent luminescence properties, Optical Materials, vol.52, pp.56-61, 2016.
DOI : 10.1016/j.optmat.2015.12.006

J. Massera, P. G?uchowski, M. Lastusaari, L. C. Rodrigues, L. Petit et al., New alternative route for the preparation of phosphate glasses with persistent luminescence properties, Journal of the European Ceramic Society, vol.35, issue.4, pp.2015-1255
DOI : 10.1016/j.jeurceramsoc.2014.11.007

J. Massera, L. Petit, J. Koponen, B. Glorieux, L. Hupa et al., Er3+???Al2O3 nanoparticles doping of borosilicate glass, Bulletin of Materials Science, vol.6, issue.5, pp.1407-1410, 2015.
DOI : 10.1002/pssc.200881727

URL : https://hal.archives-ouvertes.fr/hal-01228087

M. R. Henderson, B. C. Gibson, H. Ebendorff-heidepriem, K. Kuan, V. S. Afshar et al., Diamond in Tellurite Glass: a New Medium for Quantum Information, Tellurite Glass: A New Medium for Quantum Information, pp.2806-2810, 2011.
DOI : 10.1021/nl9014167

H. Ebendorff-heidepriem, Y. Ruan, H. Ji, A. D. Greentree, B. C. Gibson et al., Nanodiamond in tellurite glass Part I: origin of loss in nanodiamond-doped glass, Optical Materials Express, vol.4, issue.12, pp.2608-2620, 2014.
DOI : 10.1364/OME.4.002608

Y. Ruan, H. Ji, B. C. Johnson, T. Ohshima, A. D. Greentree et al., Nanodiamond in tellurite glass Part II: practical nanodiamond-doped fibers, Optical Materials Express, vol.5, issue.1, pp.73-87, 2015.
DOI : 10.1364/OME.5.000073

URL : http://arxiv.org/pdf/1411.1489

J. Zhao, X. Zheng, E. P. Schartner, P. Ionescu, R. Zhang et al., Upconversion Nanocrystal-Doped Glass: A New Paradigm for Photonic Materials, Ebendorff-Heidepriem, H. Upconversion Nanocrystals Doped Glass: A New Paradigm for Photonic Materials, pp.1507-1517, 2016.
DOI : 10.1007/978-0-387-45524-2_2

J. Leuthold, C. Koos, and W. Freude, Nonlinear silicon photonics, Nature Photonics, vol.86, issue.8, pp.535-544, 2010.
DOI : 10.1109/JPROC.2009.2020712

S. Morris and J. Ballato, Molten Core Fabrication of Novel Optical Fibers, Bull. Am. Ceram. Soc, vol.92, pp.24-29, 2013.

J. Ballato and P. Dragic, Rethinking Optical Fiber: New Demands, Old Glasses, Journal of the American Ceramic Society, vol.29, issue.7, pp.2675-2692, 2013.
DOI : 10.1109/JLT.2011.2107502

A. Peacock, J. Sparks, and N. Healy, Semiconductor optical fibres: Progress and opportunities. Laser Photonics Rev, pp.53-72, 2014.
DOI : 10.1002/lpor.201300016

G. Tao, H. Ebendorff-heidepriem, A. Stolyarov, S. Danto, J. Badding et al., Infrared fibers, Advances in Optics and Photonics, vol.7, issue.2, pp.379-458, 2015.
DOI : 10.1364/AOP.7.000379

A. Peacock, U. Gibson, and J. Ballato, Silicon Optical Fiber?Past, Present, and Future, Adv. Phys. X 2016, vol.1, pp.114-127

J. Sparks, P. Sazio, V. Gopalan, and J. Badding, Templated Chemically Deposited Semiconductor Optical Fiber Materials, Annual Review of Materials Research, vol.43, issue.1, pp.527-557, 2013.
DOI : 10.1146/annurev-matsci-073012-125958

K. Shimamura, S. Uda, T. Yamada, S. Sakaguchi, and T. Fukuda, Silicon Single Crystal Fiber Growth by Micro Pulling Down Method, Japanese Journal of Applied Physics, vol.35, issue.Part 2, No. 6B, pp.793-795, 1996.
DOI : 10.1143/JJAP.35.L793

P. Sazio, A. Amezcua-correa, C. Finlayson, J. Hayes, T. Scheidemantel et al., Microstructured Optical Fibers as High-Pressure Microfluidic Reactors, Science, vol.311, issue.5767, pp.1583-1586, 2006.
DOI : 10.1126/science.1124281

J. Ballato, T. Hawkins, P. Foy, R. Stolen, B. Kokuoz et al., Silicon optical Fiber, Optics Express, vol.16, issue.23, pp.18675-18683, 2008.
DOI : 10.1364/OE.16.018675

J. Ballato and E. Snitzer, Fabrication of fibers with high rare-earth concentrations for Faraday isolator applications, Applied Optics, vol.34, issue.30, pp.6848-6854, 1995.
DOI : 10.1364/AO.34.006848

B. Scott, W. Ke, and G. Pickrell, Fabrication of n-Type Silicon Optical Fibers, IEEE Photonics Technology Letters, vol.21, issue.24, pp.1798-1800, 2009.
DOI : 10.1109/LPT.2009.2033388

C. Finlayson, A. Amezcua-correa, P. Sazio, N. Baril, and J. Badding, Electrical and Raman characterization of silicon and germanium-filled microstructured optical fibers, Applied Physics Letters, vol.90, issue.13, pp.90-132110, 2007.
DOI : 10.1063/1.1644639

J. Ballato, T. Hawkins, P. Foy, B. Yazgan-kokuoz, R. Stolen et al., Glass-clad single-crystal germanium optical fiber, Optics Express, vol.17, issue.10, pp.8029-8035, 2009.
DOI : 10.1364/OE.17.008029

J. Ballato, T. Hawkins, P. Foy, S. Morris, N. Hon et al., Silica-clad crystalline germanium core optical fibers, Optics Letters, vol.36, issue.5, pp.687-688, 2011.
DOI : 10.1364/OL.36.000687

D. Deng, N. Orf, S. Danto, A. Abouraddy, J. Joannopoulos et al., Processing and properties of centimeter-long, in-fiber, crystalline-selenium filaments, Applied Physics Letters, vol.2, issue.2, pp.96-023102, 2010.
DOI : 10.1038/nmat2009

G. Tang, Q. Qian, X. Wen, G. Zhou, X. Chen et al., Phosphate glass-clad tellurium semiconductor core optical fibers, Journal of Alloys and Compounds, vol.633, pp.1-4, 2015.
DOI : 10.1016/j.jallcom.2015.02.007

D. Coucheron, M. Fokine, N. Patel, D. Breiby, O. Buset et al., Laser recrystallization and inscription of compositional microstructures in crystalline SiGe-core fibres, Nature Communications, vol.41, p.2017
DOI : 10.1107/S0021889808001064

G. Tang, Q. Qian, X. Wen, X. Chen, W. Liu et al., Reactive molten core fabrication of glass-clad Se_08Te_02 semiconductor core optical fibers, Optics Express, vol.23, issue.18, pp.23624-23633, 2015.
DOI : 10.1364/OE.23.023624

J. Ballato, T. Hawkins, P. Foy, C. Mcmillen, L. Burka et al., Binary III-V semiconductor core optical fiber, Optics Express, vol.18, issue.5, pp.4972-4979, 2010.
DOI : 10.1364/OE.18.004972

J. Sparks, R. He, N. Healy, M. Krishnamurthi, A. Peacock et al., Zinc Selenide Optical Fibers, Advanced Materials, vol.13, issue.14, pp.1647-1651, 2011.
DOI : 10.1364/OPEX.13.007779

C. Hou, X. Jia, L. Wei, A. Stolyarov, O. Shapira et al., High-Throughput Reactive Fiber Drawing, Nano Letters, vol.13, issue.3, pp.975-979, 2013.
DOI : 10.1021/nl304023z

S. Morris, S. Martin, T. Hawkins, P. Foy, R. Rice et al., Cladding Glass Development for Semiconductor Core Optical Fibers, Int. J. Appl. Glass. Sci, vol.2012, issue.3, pp.144-153
DOI : 10.1364/anic.2012.jtu5a.16

N. Orf, O. Shapira, F. Sorin, S. Danto, M. Baldo et al., Fiber draw synthesis, Proc. Nat. Acad. Sci. USA 2011, pp.4743-4747
DOI : 10.1080/10408430390802431

URL : http://www.pnas.org/content/108/12/4743.full.pdf

C. Hou, X. Jia, L. Wei, S. Tan, X. Zhao et al., Crystalline silicon core fibres from aluminium core preforms, Nature Communications, vol.3, issue.1, p.6248
DOI : 10.1364/OME.3.000651

URL : http://www.nature.com/articles/ncomms7248.pdf

N. Healy, L. Lagonigro, J. Sparks, S. Boden, P. Sazio et al., Polycrystalline silicon optical fibers with atomically smooth surfaces, Optics Letters, vol.36, issue.13, pp.2480-2482, 2011.
DOI : 10.1364/OL.36.002480

S. Morris, T. Hawkins, P. Foy, J. Hudson, L. Zhu et al., On loss in silicon core optical fibers, Optical Materials Express, vol.2, issue.11, pp.1511-1519, 2012.
DOI : 10.1364/OME.2.001511

B. Scott and G. Pickrell, Silicon optical fiber diameter dependent grain size, Journal of Crystal Growth, vol.371, pp.134-141, 2013.
DOI : 10.1016/j.jcrysgro.2013.02.022

S. Morris, T. Hawkins, P. Foy, C. Mcmillen, J. Fan et al., Reactive molten core fabrication of silicon optical fiber, Optical Materials Express, vol.1, issue.6, pp.1141-1149, 2011.
DOI : 10.1364/OME.1.001141

E. Nordstrand, A. Dibbs, A. Eraker, and U. Gibson, Alkaline oxide interface modifiers for silicon fiber production, Optical Materials Express, vol.3, issue.5, pp.651-657, 2013.
DOI : 10.1364/OME.3.000651

C. Mcmillen, T. Hawkins, P. Foy, D. Mulwee, J. Kolis et al., On crystallographic orientation in crystal core optical fibers, Optical Materials, vol.32, issue.9, pp.862-867, 2010.
DOI : 10.1016/j.optmat.2010.01.002

N. Gupta, C. Mcmillen, R. Singh, R. Podila, A. Rao et al., Annealing of silicon optical fibers, Journal of Applied Physics, vol.110, issue.9, p.93107, 2011.
DOI : 10.1109/TED.2010.2096511

S. Morris, C. Mcmillen, T. Hawkins, P. Foy, R. Stolen et al., The influence of core geometry on the crystallography of silicon optical fiber, Journal of Crystal Growth, vol.352, issue.1, pp.53-58, 2012.
DOI : 10.1016/j.jcrysgro.2011.12.009

C. Mcmillen, G. Brambilla, S. Morris, T. Hawkins, P. Foy et al., On crystallographic orientation in crystal core optical fibers II: Effects of tapering, Optical Materials, vol.35, issue.2, pp.93-96, 2012.
DOI : 10.1016/j.optmat.2012.06.020

N. Healy, S. Mailis, N. Bulgakova, P. Sazio, T. Day et al., Extreme electronic bandgap modification in laser-crystallized silicon optical fibres, Nature Materials, vol.19, issue.12, pp.1122-1127, 2014.
DOI : 10.1364/OE.19.021707

D. Coucheron, M. Fokine, N. Patil, D. Breiby, O. Buset et al., CO 2 Laser-Induced Directional Recrystallization to Produce Single Crystal Silicon-Core Optical Fibers with Low Loss, Adv. Opt. Mater, vol.4, pp.1004-1008, 2016.

D. Won, M. Ramirez, H. Kang, V. Gopalan, N. Baril et al., All-optical modulation of laser light in amorphous silicon-filled microstructured optical fibers, Applied Physics Letters, vol.40, issue.16, pp.91-161112, 2007.
DOI : 10.1063/1.119624

P. Mehta, N. Healy, N. Baril, P. Sazio, J. Badding et al., Nonlinear transmission properties of hydrogenated amorphous silicon core optical fibers, Optics Express, vol.18, issue.16, pp.16826-16831, 2010.
DOI : 10.1364/OE.18.016826

P. Mehta, N. Healy, J. Sparks, T. Day, P. Sazio et al., All-optical modulation using two-photon absorption in silicon core optical fibers, Optics Express, vol.19, issue.20, pp.19078-19083, 2011.
DOI : 10.1364/OE.19.019078

P. Mehta, N. Healy, T. Day, J. Badding, and A. Peacock, Ultrafast wavelength conversion via cross-phase modulation in hydrogenated amorphous silicon optical fibers, Optics Express, vol.20, issue.24, pp.26110-26116, 2012.
DOI : 10.1364/OE.20.026110

L. Shen, N. Healy, L. Xu, H. Cheng, T. Day et al., Four-wave mixing and octave-spanning supercontinuum generation in a small core hydrogenated amorphous silicon fiber pumped in the mid-infrared, Optics Letters, vol.39, issue.19, pp.5721-5724, 2014.
DOI : 10.1364/OL.39.005721

A. Peacock, Soliton propagation in tapered silicon core fibers, Optics Letters, vol.35, issue.21, pp.3697-3699, 2010.
DOI : 10.1364/OL.35.003697

URL : https://eprints.soton.ac.uk/176873/1/4926.pdf

F. Suhailin, L. Shen, N. Healy, L. Xiao, M. Jones et al., Tapered polysilicon core fibers for nonlinear photonics, Optics Letters, vol.41, issue.7, pp.1360-1363, 2016.
DOI : 10.1364/OL.41.001360

URL : https://eprints.soton.ac.uk/388142/1/Tapered_fibre_OL_2015_accepted.pdf

A. Gumennik, L. Wei, G. Lestoquoy, A. Stolyarov, X. Jia et al., Silicon-in-silica spheres via axial thermal gradient in-fibre capillary instabilities, Nature Communications, vol.58, pp.2216-2220, 2013.
DOI : 10.1149/1.1837159

P. Wang, T. Lee, M. Ding, A. Dhar, T. Hawkins et al., Germanium microsphere high-Q resonator, Optics Letters, vol.37, issue.4, pp.728-730, 2012.
DOI : 10.1364/OL.37.000728

URL : https://arrow.dit.ie/cgi/viewcontent.cgi?article=1109&context=engscheceart

C. Lin, J. Chen, and L. Wang, High-<inline-formula> <tex-math notation="LaTeX">$Q$ </tex-math></inline-formula> Si Microsphere Resonators Fabricated From Si-Cored Fibers for WGMs Excitation, IEEE Photonics Technology Letters, vol.27, issue.13, pp.1355-1358, 2015.
DOI : 10.1109/LPT.2015.2407409

N. Vukovic, N. Healy, T. Day, J. Sparks, P. Saizo et al., Thermal nonlinearity in silicon microcylindrical resonators, Applied Physics Letters, vol.2, issue.18, p.181101, 2012.
DOI : 10.1063/1.1383056

URL : https://eprints.soton.ac.uk/339962/1/5466.pdf

N. Vukovic, N. Healy, F. Suhailin, P. Mehta, T. Day et al., Ultrafast optical control using the Kerr nonlinearity in hydrogenated amorphous silicon microcylindrical resonators, Scientific Reports, vol.18, issue.1, p.2885
DOI : 10.1364/OE.18.018438

F. Suhailin, N. Healy, Y. Franz, M. Sumetsky, J. Ballato et al., Kerr nonlinear switching in a hybrid silica-silicon microspherical resonator, Optics Express, vol.23, issue.13, pp.17263-17268, 2015.
DOI : 10.1364/OE.23.017263

N. Healy, J. Sparks, R. He, P. Sazio, J. Badding et al., High index contrast semiconductor ARROW and hybrid ARROW fibers, Optics Express, vol.19, issue.11, pp.10979-10985, 2011.
DOI : 10.1364/OE.19.010979

P. Wang, C. Charlton, T. Lee, R. Ismaeel, T. Hawkins et al., Mid-infrared Raman sources using spontaneous Raman scattering in germanium core optical fibers, Applied Physics Letters, vol.102, issue.1, p.11111, 2013.
DOI : 10.1038/nature03273

R. Davis, R. Rice, A. Ballato, T. Hawkins, P. Foy et al., Toward a photoconducting semiconductor RF optical fiber antenna array, Applied Optics, vol.49, issue.27, pp.5163-5168, 2010.
DOI : 10.1364/AO.49.005163

R. He, T. Day, M. Krishnamurthi, J. Sparks, P. Sazio et al., Junction Fibers, Advanced Materials, vol.41, issue.10, pp.1461-1467, 2013.
DOI : 10.1146/annurev-matsci-062910-100434

D. Homa, A. Cito, G. Pickrell, C. Hill, and B. Scott, Silicon fiber with p-n junction, Applied Physics Letters, vol.40, issue.8, p.122110, 2014.
DOI : 10.1016/0038-1101(72)90169-4

R. He, P. Sazio, A. Peacock, N. Healy, J. Sparks et al., Integration of gigahertz-bandwidth semiconductor devices inside microstructured optical fibres, Nature Photonics, vol.17, issue.3, pp.174-179, 2012.
DOI : 10.1364/OE.17.010082

F. Martinsen, B. Smeltzer, M. Nord, T. Hawkins, J. Ballato et al., Silicon-core glass fibres as microwire radial-junction solar cells, Scientific Reports, vol.501, issue.1
DOI : 10.1016/j.tsf.2005.07.196

URL : http://www.nature.com/articles/srep06283.pdf

F. Martinsen, J. Ballato, T. Hawkins, and U. Gibson, Bulk fabrication and properties of solar grade silicon microwires, APL Materials, vol.2, issue.11, p.116108, 2014.
DOI : 10.1063/1.2977758

F. Martinsen, B. Smeltzer, J. Ballato, T. Hawkins, M. Jones et al., Light trapping in horizontally aligned silicon microwire solar cells, Optics Express, vol.23, issue.24, pp.1463-1471, 2015.
DOI : 10.1364/OE.23.0A1463

J. A. Savage, Optical properties of chalcogenide glasses, Journal of Non-Crystalline Solids, vol.47, issue.1, pp.101-116, 1982.
DOI : 10.1016/0022-3093(82)90349-0

G. Snopatin, V. Shiryaev, V. Plotnichenko, E. Dianov, and M. Churbanov, High-purity chalcogenide glasses for fiber optics, Inorganic Materials, vol.3, issue.3, pp.1439-1460, 2009.
DOI : 10.1007/s10789-005-0276-9

M. F. Churbanov, High-purity chalcogenide glasses as materials for fiber optics, Journal of Non-Crystalline Solids, vol.184, pp.25-29, 1995.
DOI : 10.1016/0022-3093(94)00688-1

S. Cui, C. Boussard-plédel, J. Lucas, and B. Bureau, Te-based glass fiber for far-infrared biochemical sensing up to 16 ??m, Optics Express, vol.22, issue.18, pp.21253-21262, 2014.
DOI : 10.1364/OE.22.021253

W. A. King, A. G. Clare, and W. Lacourse, Laboratory preparation of highly pure As2Se3 glass, Journal of Non-Crystalline Solids, vol.181, issue.3, pp.231-237, 1995.
DOI : 10.1016/S0022-3093(94)00512-5

V. Kokorina, Glasses for Infrared Optics, 1996.

S. Hocdé, C. Boussard-plédel, G. Fonteneau, and J. Lucas, Chalcogens based glasses for IR fiber chemical sensors, Solid State Sciences, vol.3, issue.3, pp.279-284, 2001.
DOI : 10.1016/S1293-2558(00)01135-3

S. Danto, D. Thompson, P. Wachtel, J. D. Musgraves, K. Richardson et al., Chalcogenide Glass, International Journal of Applied Glass Science, vol.336, issue.96, pp.31-41, 2013.
DOI : 10.1016/j.jnoncrysol.2004.01.006

URL : https://hal.archives-ouvertes.fr/hal-01088095

J. Troles, Q. Coulombier, G. Canat, M. Duhant, W. Renard et al., Low loss microstructured chalcogenide fibers for large non linear effects at 1995 nm, Optics Express, vol.18, issue.25, pp.26647-26654, 2010.
DOI : 10.1364/OE.18.026647

URL : https://hal.archives-ouvertes.fr/hal-00854027

L. A. Mochalov, A. S. Lobanov, A. V. Nezhdanov, A. V. Kostrov, and V. M. Vorotyntsev, Preparation of Ge???S???I and Ge???Sb???S???I glasses by plasma-enhanced chemical vapor deposition, Journal of Non-Crystalline Solids, vol.423, issue.424, pp.76-80, 2015.
DOI : 10.1016/j.jnoncrysol.2015.04.036

M. F. Churbanov, V. S. Shiryaev, I. V. Scripachev, G. E. Snopatin, V. V. Gerasimenko et al., Optical fibers based on As???S???Se glass system, Journal of Non-Crystalline Solids, vol.284, issue.1-3, pp.146-152, 2001.
DOI : 10.1016/S0022-3093(01)00394-5

W. H. Kim, V. Q. Nguyen, L. B. Shaw, L. E. Busse, C. Florea et al., Recent progress in chalcogenide fiber technology at NRL, Journal of Non-Crystalline Solids, vol.431, pp.8-15, 2016.
DOI : 10.1016/j.jnoncrysol.2015.03.028

J. Kobelke, J. Kirchhof, M. Scheffler, and A. Schwuchow, Chalcogenide glass single mode fibres ??? preparation and properties, Journal of Non-Crystalline Solids, vol.256, issue.257, pp.226-231, 1999.
DOI : 10.1016/S0022-3093(99)00461-5

F. Chenard, O. Alvarez, and H. Moawad, MIR chalcogenide fiber and devices, Proceedings of the SPIE BiOS, International Society for Optics and Photonics, p.93170, 2015.
DOI : 10.1117/12.2085056

C. Lafond, J. Couillard, J. Delarosbil, F. Sylvain, and P. De-sandro, Recent improvements on mid-IR chalcogenide optical fibers, Proceedings of the SPIE Defense + Security, International Society for Optics and Photonics, p.90701, 2014.
DOI : 10.1117/12.2050488

P. Houizot, F. Smektala, V. Couderc, J. Troles, and L. Grossard, Selenide glass single mode optical fiber for nonlinear optics, Opt. Mater, vol.29, pp.651-656, 2007.
URL : https://hal.archives-ouvertes.fr/hal-00370056

J. Troles, Y. Niu, C. Duverger-arfuso, F. Smektala, L. Brilland et al., Synthesis and characterization of chalcogenide glasses from the system Ga???Ge???Sb???S and preparation of a single-mode fiber at 1.55??m, Materials Research Bulletin, vol.43, issue.4, pp.976-982, 2008.
DOI : 10.1016/j.materresbull.2007.04.029

URL : https://hal.archives-ouvertes.fr/hal-00370070

C. Conseil, Q. Coulombier, C. Boussard-pledel, J. Troles, L. Brilland et al., Chalcogenide step index and microstructured single mode fibers, Journal of Non-Crystalline Solids, vol.357, issue.11-13, pp.2480-2483, 2011.
DOI : 10.1016/j.jnoncrysol.2010.11.090

URL : https://hal.archives-ouvertes.fr/hal-00719526

S. D. Savage, C. A. Miller, D. Furniss, and A. B. Seddon, Extrusion of chalcogenide glass preforms and drawing to multimode optical fibers, Journal of Non-Crystalline Solids, vol.354, issue.29, pp.3418-3427, 2008.
DOI : 10.1016/j.jnoncrysol.2008.01.032

P. Russell, Photonic Crystal Fibers, Science, vol.299, issue.5605, pp.358-362, 2003.
DOI : 10.1126/science.1079280

T. A. Birks, P. J. Roberts, P. S. Russell, D. M. Atkin, and T. J. Shepherd, Full 2-D photonic bandgaps in silica/air structures, Electronics Letters, vol.31, issue.22, pp.31-1941, 1995.
DOI : 10.1049/el:19951306

T. M. Monro, Y. D. West, D. W. Hewak, N. G. Broderick, and D. J. Richardson, Chalcogenide holey fibres, Electronics Letters, vol.36, issue.24, 1998.
DOI : 10.1049/el:20001394

URL : https://eprints.soton.ac.uk/13615/1/2076.pdf

L. Brilland, F. Smektala, G. Renversez, T. Chartier, J. Troles et al., Fabrication of complex structures of Holey Fibers in Chalcogenide glass, Optics Express, vol.14, issue.3, pp.1280-1285, 2006.
DOI : 10.1364/OE.14.001280

T. A. Birks, J. C. Knight, and P. S. Russell, Endlessly single-mode photonic crystal fiber, Optics Letters, vol.22, issue.13, pp.961-963, 1997.
DOI : 10.1364/OL.22.000961

G. Renversez, F. Bordas, and B. Kuhlmey, Second mode transition in microstructured optical fibers: determination of the critical geometrical parameter and study of the matrix refractive index and effects of cladding size, Optics Letters, vol.30, issue.11, pp.1264-1266, 2005.
DOI : 10.1364/OL.30.001264

URL : https://hal.archives-ouvertes.fr/hal-00079751

P. Toupin, L. Brilland, C. Boussard-pledel, B. Bureau, D. Mechin et al., Comparison between chalcogenide glass single index and microstructured exposed-core fibers for chemical sensing, Journal of Non-Crystalline Solids, vol.377, pp.217-219, 2013.
DOI : 10.1016/j.jnoncrysol.2012.12.026

URL : https://hal.archives-ouvertes.fr/hal-00860095

R. R. Gattass, D. Rhonehouse, D. Gibson, C. C. Mcclain, R. Thapa et al., Infrared glass-based negative-curvature anti-resonant fibers fabricated through extrusion, Optics Express, vol.24, issue.22, pp.25697-25703, 2016.
DOI : 10.1364/OE.24.025697

Q. Coulombier, L. Brilland, P. Houizot, T. Chartier, T. N. Nguyen et al., Casting method for producing low-loss chalcogenide microstructured optical fibers, Optics Express, vol.18, issue.9, pp.9107-9112, 2010.
DOI : 10.1364/OE.18.009107

URL : https://hal.archives-ouvertes.fr/hal-00494022

M. El-amraoui, G. Gadret, J. C. Jules, J. Fatome, C. Fortier et al., Microstructured chalcogenide optical fibers from As_2S_3 glass: towards new IR broadband sources, Microstructured chalcogenide optical fibers from As 2 S 3 glass: Towards new IR broadband sources, pp.26655-26665, 2010.
DOI : 10.1364/OE.18.026655

URL : https://hal.archives-ouvertes.fr/hal-00608837

P. Zhang, J. Zhang, P. Yang, S. Dai, X. Wang et al., Fabrication of chalcogenide glass photonic crystal fibers with mechanical drilling, Optical Fiber Technology, vol.26, pp.176-179
DOI : 10.1016/j.yofte.2015.09.002

J. Heo, M. Rodrigues, S. J. Saggese, and G. H. Sigel, Remote fiber-optic chemical sensing using evanescent-wave interactions in chalcogenide glass fibers, Applied Optics, vol.30, issue.27, pp.3944-3951, 1991.
DOI : 10.1364/AO.30.003944

J. Keirsse, C. Boussard-pledel, O. Loreal, O. Sire, B. Bureau et al., IR optical fiber sensor for biomedical applications, Vibrational Spectroscopy, vol.32, issue.1, pp.23-32, 2003.
DOI : 10.1016/S0924-2031(03)00044-4

F. Charpentier, J. Troles, Q. Coulombier, L. Brilland, P. Houizot et al., Detection Using Microstructured Chalcogenide Fibers, et al. CO 2 detection using microstructured chalcogenide fibers, pp.745-749, 2009.
DOI : 10.1166/sl.2009.1142

URL : https://hal.archives-ouvertes.fr/hal-00471481

A. A. Wilhelm, P. Lucas, D. L. Derosa, and M. R. Riley, Biocompatibility of Te???As???Se glass fibers for cell-based bio-optic infrared sensors, Journal of Materials Research, vol.2, issue.04, pp.1098-1104, 2007.
DOI : 10.1016/S0956-5663(01)00168-3

P. Lucas, A. A. Wilhelm, M. Videa, C. Boussard-plédel, and B. Bureau, Chemical stability of chalcogenide infrared glass fibers, Corrosion Science, vol.50, issue.7, pp.2047-2052, 2008.
DOI : 10.1016/j.corsci.2008.04.020

URL : https://hal.archives-ouvertes.fr/hal-00373292

A. Godard, Infrared (2???12 ??m) solid-state laser sources: a review, Comptes Rendus Physique, vol.8, issue.10, pp.1100-1128, 2007.
DOI : 10.1016/j.crhy.2007.09.010

C. Xia, . Kumar, R. S. Hegde, M. N. Islam, A. Galvanauskas et al., Power scalable mid-infrared supercontinuum generation in ZBLAN fluoride fibers with up to 1.3 watts time-averaged power, Optics Express, vol.15, issue.3, pp.865-871, 2007.
DOI : 10.1364/OE.15.000865

URL : https://hal.archives-ouvertes.fr/hal-00866953

J. Heo, Optical characteristics of rare-earth-doped sulphide glasses, Journal of Materials Science Letters, vol.7, issue.14, pp.1014-1016, 1995.
DOI : 10.1007/BF00274635

B. J. Park, H. S. Seo, J. T. Ahn, Y. G. Choi, D. Y. Jeon et al., Mid-infrared (3.5???5.5??m) spectroscopic properties of Pr3+-doped Ge???Ga???Sb???Se glasses and optical fibers, Journal of Luminescence, vol.128, issue.10, pp.1617-1622, 2008.
DOI : 10.1016/j.jlumin.2008.03.011

L. B. Shaw, B. Cole, P. A. Thielen, J. S. Sanghera, and I. D. Aggarwal, Mid-wave IR and long-wave IR laser potential of rare-earth doped chalcogenide glass fiber, IEEE Journal of Quantum Electronics, vol.37, issue.9, pp.1127-1137, 2001.
DOI : 10.1109/3.945317

T. Schweizer, D. W. Hewak, B. N. Samson, and D. N. Payne, Spectroscopy of potential mid-infrared laser transitions in gallium lanthanum sulfide glass, J Lumin, pp.72-74, 1997.

F. Prudenzano, L. Mescia, L. A. Allegretti, M. De-sario, T. Palmisano et al., Design of Er3+-doped chalcogenide glass laser for MID-IR application, Journal of Non-Crystalline Solids, vol.355, issue.18-21, pp.1145-1148, 2009.
DOI : 10.1016/j.jnoncrysol.2009.01.051

URL : https://hal.archives-ouvertes.fr/hal-00452740

F. Starecki, F. Charpentier, J. Doualan, L. Quetel, K. Michel et al., Mid-IR optical sensor for CO2 detection based on fluorescence absorbance of Dy3+:Ga5Ge20Sb10S65 fibers, Sensors and Actuators B: Chemical, vol.207, pp.518-525, 2015.
DOI : 10.1016/j.snb.2014.10.011

URL : https://hal.archives-ouvertes.fr/hal-01077740

J. M. Dudley and J. Taylor, Supercontinuum Generation in Optical Fibers, 2010.
DOI : 10.1017/CBO9780511750465

URL : https://hal.archives-ouvertes.fr/hal-00476072

C. R. Petersen, U. Møller, I. Kubat, B. Zhou, S. Dupont et al., Mid-infrared supercontinuum covering the 1.4???13.3?????m molecular fingerprint region using ultra-high NA chalcogenide step-index fibre, Nature Photonics, vol.1, issue.11, pp.830-834, 2014.
DOI : 10.1038/nphoton.2007.202

R. Gattas, B. Shaw, V. Q. Nguyen, P. C. Pureza, I. D. Aggarwal et al., All-fiber chalcogenide-bsed mid-infrared supercontinuum source, pp.345-348

O. Mouawad, J. Picot-clemente, F. Amrani, C. Strutynski, J. Fatome et al., Multioctave midinfrared supercontinuum generation in suspended-core chalcogenide fibers, Optics Letters, vol.39, issue.9, pp.2684-2687, 2014.
DOI : 10.1364/OL.39.002684

Y. Yu, B. Zhang, X. Gai, C. Zhai, S. Qi et al., .8?10 mu m mid-infrared supercontinuum generated in a step-index chalcogenide fiber using low peak pump power, Opt. Lett, vol.1, issue.40, pp.1081-1084, 2015.

U. Møller, Y. Yu, I. Kubat, C. R. Petersen, X. Gai et al., Multi-milliwatt mid-infrared supercontinuum generation in a suspended core chalcogenide fiber, Optics Express, vol.23, issue.3, pp.3282-3291, 2015.
DOI : 10.1364/OE.23.003282

T. L. Cheng, K. Nagasaka, T. H. Tuan, X. J. Xue, M. Matsumoto et al., Mid-infrared supercontinuum generation spanning 20 to 151????????m in a chalcogenide step-index fiber, Optics Letters, vol.41, issue.9, pp.2117-2120, 2016.
DOI : 10.1364/OL.41.002117

B. Zhang, Y. Yu, C. Zhai, S. Qi, Y. Wang et al., High Brightness 2.2-12 ??m Mid-Infrared Supercontinuum Generation in a Nontoxic Chalcogenide Step-Index Fiber, Journal of the American Ceramic Society, vol.23, issue.8, pp.2565-2568, 2016.
DOI : 10.1364/OE.23.001300