P. Brasil, Zika virus outbreak in Rio de Janeiro, Brasil: clinical characterization, epidemiological and virological aspects, PLoS Negl. Trop. Dis, vol.10, issue.4
DOI : 10.1371/journal.pntd.0004636

URL : http://doi.org/10.1371/journal.pntd.0004636

, World Health Organization Zika Virus, p.8, 2016.

R. S. Fernandes, Culex quinquefasciatus from Rio de Janeiro Is Not Competent to Transmit the Local Zika Virus, PLOS Neglected Tropical Diseases, vol.22, issue.10
DOI : 10.1371/journal.pntd.0004993.g003

URL : https://hal.archives-ouvertes.fr/pasteur-01486979

E. E. Petersen, Update: Interim Guidance for Preconception Counseling and Prevention of Sexual Transmission of Zika Virus for Persons with Possible Zika Virus Exposure ??? United States, September 2016, MMWR. Morbidity and Mortality Weekly Report, vol.65, issue.39, pp.1077-1081, 2016.
DOI : 10.15585/mmwr.mm6539e1

F. C. Coelho, Higher incidence of Zika in adult women than adult men in Rio de Janeiro suggests a significant contribution of sexual transmission from men to women, International Journal of Infectious Diseases, vol.51, pp.128-132, 2016.
DOI : 10.1016/j.ijid.2016.08.023

URL : https://hal.archives-ouvertes.fr/hal-01448500

I. J. Motta and B. R. Spencer, Evidence for Transmission of Zika Virus by Platelet Transfusion, New England Journal of Medicine, vol.375, issue.11, pp.1101-1103, 2016.
DOI : 10.1056/NEJMc1607262

G. W. Dick, S. F. Kitchen, and A. J. Haddow, Zika Virus (I). Isolations and serological specificity, Transactions of the Royal Society of Tropical Medicine and Hygiene, vol.62, issue.5, pp.509-520, 1952.
DOI : 10.1080/00034983.1933.11684739

D. L. Moore, Arthropod-borne viral infections of man in Nigeria, 1964???1970, Annals of Tropical Medicine & Parasitology, vol.44, issue.1, pp.49-64, 1964.
DOI : 10.4269/ajtmh.1941.s1-21.75

M. R. Duffy, Zika Virus Outbreak on Yap Island, Federated States of Micronesia, New England Journal of Medicine, vol.360, issue.24, pp.2536-2543, 2009.
DOI : 10.1056/NEJMoa0805715

URL : https://hal.archives-ouvertes.fr/pasteur-00734543

V. Cao-lormeau, Zika virus, French Polynesia, South Pacific, Emerg. Infect. Dis, vol.20, issue.6, pp.1085-1086, 2013.

J. Tognarelli, A report on the outbreak of Zika virus on Easter Island, South Pacific, 2014, Archives of Virology, vol.30, issue.10, pp.665-668, 2014.
DOI : 10.1093/molbev/mst197

. Secretaria-de-vigilância-em-saúde, Boletim Epidemiolólico. monitoramento dos casos de dengue, febre de chikungunya e febre pelo vírus Zika até a Semana Epidemiológica 52 http://portalarquivos.saude.gov.br/images/pdf 2017-002-Monitoramento-dos-casos-de-dengue--febre-de-chikungu\ \nya-e-febre-pelo-v--rus-Zika-ate-a-Semana-Epidemiologica, p.8, 2016.

N. R. Faria and R. S. Azevedo, Zika virus in the Americas: Early epidemiological and genetic findings, Science, vol.42, issue.W1, pp.345-349, 2016.
DOI : 10.1093/nar/gku316

M. Hennessey, M. Fischer, and J. E. Staples, Zika Virus Spreads to New Areas ??? Region of the Americas, May 2015???January 2016, MMWR. Morbidity and Mortality Weekly Report, vol.65, issue.3, pp.55-58, 2015.
DOI : 10.15585/mmwr.mm6503e1

G. Valentine, L. Marquez, and M. Pammi, Zika Virus-Associated Microcephaly and Eye Lesions in the Newborn, Journal of the Pediatric Infectious Diseases Society, vol.83, issue.3, pp.323-328, 2016.
DOI : 10.1016/j.survophthal.2007.12.003

T. Santos, Zika Virus and the Guillain???Barr?? Syndrome ??? Case Series from Seven Countries, New England Journal of Medicine, vol.375, issue.16, pp.1598-1601, 2016.
DOI : 10.1056/NEJMc1609015

, World Health Organization Zika virus, Microcephaly and Guillain- Barré Syndrome -Situation Report, p.8, 2016.

A. Naheed, D. M. Lucy, and . Singh, Numerical study of SARS epidemic model with the inclusion of diffusion in the system, Applied Mathematics and Computation, vol.229, pp.480-498, 2014.
DOI : 10.1016/j.amc.2013.12.062

A. Huppert and G. Katriel, Mathematical modelling and prediction in infectious disease epidemiology, Clinical Microbiology and Infection, vol.19, issue.11, pp.999-1005, 2013.
DOI : 10.1111/1469-0691.12308

D. P. Lizarralde-bejarano, S. Arboleda-sánchez, and M. E. Puerta-yepes, Understanding epidemics from mathematical models: Details of the 2010 dengue epidemic in Bello (Antioquia, Colombia), Applied Mathematical Modelling, vol.43, pp.566-578, 2017.
DOI : 10.1016/j.apm.2016.11.022

W. L. Oberkampf and C. J. Roy, Verification and Validation in Scientific Computing, 2010.
DOI : 10.1017/CBO9780511760396

A. and C. Jr, Modeling and Quantification of Physical Systems Uncertainties in a Probabilistic Framework, Probabilistic Prognostics and Health Management of Energy Systems, pp.127-156, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01516295

E. Dantas, M. Tosin, J. Peterson, V. Lopes, and A. Cunha-jr, A mathematical analysis about Zika virus outbreak in Rio de Janeiro, 4th Conference of Computational Interdisciplinary Science, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01471302

E. Dantas, M. Tosin, and A. Cunha-jr, Zika virus in Brazil: calibration of a epidemic model for the 2016 outbreak, XXXVII Congresso Nacional de Matemática Aplicada e Computacional, 2017.
DOI : 10.5540/03.2018.006.01.0460

S. Funk, Comparative analysis of Dengue and Zika outbreaks reveals differences by setting and virus, PLoS Negl. Trop. Dis, vol.10, issue.12
DOI : 10.1371/journal.pntd.0005173

URL : https://doi.org/10.1371/journal.pntd.0005173

A. J. Kucharski, S. Funk, R. M. Eggo, H. P. Mallet, W. Edmunds et al., Transmission dynamics of Zika virus in island populations: a modelling analysis of the 2013?14 French Polynesia outbreak, PLoS Negl. Trop. Dis, vol.10, issue.5

X. Wang, L. Wei, and J. Zhang, Dynamical analysis and perturbation solution of an SEIR epidemic model, Applied Mathematics and Computation, vol.232, pp.479-486, 2014.
DOI : 10.1016/j.amc.2014.01.090

Y. Wanga, J. Cao, A. Alsaedi, and B. Ahmade, Edge-based SEIR dynamics with or without infectious force in latent period on random networks, Communications in Nonlinear Science and Numerical Simulation, vol.45, pp.35-54, 2017.
DOI : 10.1016/j.cnsns.2016.09.014

M. A. Safi, A. B. Gumel, and E. H. Elbasha, Qualitative analysis of an age-structured SEIR epidemic model with treatment, Applied Mathematics and Computation, vol.219, issue.22, pp.10627-10642, 2013.
DOI : 10.1016/j.amc.2013.03.126

Y. Cai, Y. Kang, and W. Wang, A stochastic SIRS epidemic model with nonlinear incidence rate, Applied Mathematics and Computation, vol.305, pp.221-240, 2017.
DOI : 10.1016/j.amc.2017.02.003

D. L. Smith, K. E. Battle, S. I. Hay, C. M. Barker, T. W. Scott et al., Ross, Macdonald, and a Theory for the Dynamics and Control of Mosquito-Transmitted Pathogens, PLoS Pathogens, vol.3, issue.4
DOI : 10.1371/journal.ppat.1002588.s001

F. Brauer and C. , Mathematical Models in Population Biology and Epidemiology, pp.10-1007, 2012.

F. Brauer, P. Van-den-driessche, and J. Wu, Mathematical Epidemiology, 2008.

M. Martcheva, An Introduction to Mathematical Epidemiology, 2015.
DOI : 10.1007/978-1-4899-7612-3

M. Chan and M. A. Johansson, The Incubation Periods of Dengue Viruses, PLoS ONE, vol.9, issue.11
DOI : 10.1371/journal.pone.0050972.s003

J. Lessler and L. H. Chaisson, Assessing the global threat from Zika virus, Science, vol.32, issue.1
DOI : 10.1093/molbev/msu300

URL : http://science.sciencemag.org/content/353/6300/aaf8160.full.pdf

M. Begon, M. Bennett, and R. G. Bowers, A clarification of transmission terms in host-microparasite models: numbers, densities and areas, Epidemiology and Infection, vol.129, issue.01, pp.10-1017, 2002.
DOI : 10.1017/S0950268802007148

S. Ministe´rioministe´rio, Obtenção de número de casos confirmados de zika, por munici´piomunici´pio e semana epidemiolo´gicaepidemiolo´gica

F. Instituto-brasileiro-de-geografia-e-estatística, Diário Oficial da União, N. 167-Seção 1. Imprensa Nacional, pp.47-65, 2016.

N. M. Ferguson, Countering the Zika epidemic in Latin America, Science, vol.29, issue.3, pp.353-354, 2016.
DOI : 10.1128/CMR.00072-15

URL : https://science.sciencemag.org/content/sci/353/6297/353.full.pdf

P. J. Wong, M. I. Li, C. Chong, L. Ng, and C. Tan, Aedes (Stegomyia ) albopictus (Skuse): A Potential Vector of Zika Virus in Singapore

, PLoS Negl. Trop. Dis, vol.7, issue.8

M. I. Li, P. J. Wong, L. Ng, and C. Tan, Oral Susceptibility of Singapore Aedes (Stegomyia) aegypti (Linnaeus) to Zika Virus, PLoS Neglected Tropical Diseases, vol.6, issue.8
DOI : 10.1371/journal.pntd.0001792.g003

T. Chouin-carneiro and A. Vega-rua, Differential Susceptibilities of Aedes aegypti and Aedes albopictus from the Americas to Zika Virus, PLOS Neglected Tropical Diseases, vol.39, issue.6
DOI : 10.1371/journal.pntd.0004543.t001

URL : https://hal.archives-ouvertes.fr/pasteur-01491874

C. T. Ott and J. T. Lessler, Times to key events in Zika virus infection and implications for blood donation: a systematic review, Bull. World Health Organ, vol.94, pp.841-849, 2016.

S. Ioos, H. Mallet, I. L. Goffart, V. Gauthier, T. Cardoso et al., Current Zika virus epidemiology and recent epidemics, M??decine et Maladies Infectieuses, vol.44, issue.7, pp.302-307, 2014.
DOI : 10.1016/j.medmal.2014.04.008

E. Centre and D. Prevention, Rapid risk assessment: Microcephaly in Brazil potentially linked to the Zika virus epidemic. https://ecdc.europa.eu/sites/ portal/files/media/en/publications/Publications/zika-\ microcephaly-Brazil-rapid-risk-assessment, 2015.

, Accessed: 08, 2017.

D. A. Villela and L. S. Bastos, SUMMARY, Epidemiology and Infection, vol.76, issue.08, pp.1649-1657, 2017.
DOI : 10.1590/0074-02760160332

M. Otero, H. G. Solari, and N. Schweigmann, A Stochastic Population Dynamics Model for Aedes Aegypti: Formulation and Application to a City with Temperate Climate, Bulletin of Mathematical Biology, vol.99, issue.8, pp.1945-1974, 2006.
DOI : 10.1007/978-1-4757-4067-7

R. L. De-oliveira, R. M. De-freitas, and C. T. Codeço, Daily survival rates and dispersal of Aedes aegypti females in Rio de Janeiro, Brazil. Am. J. Trop. Med. Hyg, vol.76, issue.4, pp.659-665, 2007.

M. J. Nelson, Aedes Aegypti: Biology and Ecology, Pan American Health Organization, 1986.

, National Center for Emerging and Zoonotic Infectious Diseases. Dengue and the Aedes aegypti mosquito, p.8, 2017.

M. W. Hirsch, S. Smale, and R. L. Devaney, Differential Equations, Dynamical Systems, and an Introduction to Chaos, 2013.

L. Perko, Differential Equations and Dynamical Systems, 2006.

R. Aster, B. Borchers, and C. Thurber, Parameter Estimation and Inverse Problems, 2012.

F. Yaman, V. G. Yakhno, and R. Potthast, A Survey on Inverse Problems for Applied Sciences. Math. Probl. Eng, vol.976837, pp.10-1155, 2013.

G. Chavent, Nonlinear Least Squares for Inverse Problems: Theoretical Foundations and Step-by-Step Guide for Applications, 2010.
DOI : 10.1007/978-90-481-2785-6

T. F. Coleman and Y. Li, An Interior Trust Region Approach for Nonlinear Minimization Subject to Bounds, SIAM Journal on Optimization, vol.6, issue.2, pp.418-445, 1996.
DOI : 10.1137/0806023

A. R. Conn, N. I. Gould, and P. L. Toint, Trust Region Methods. SIAM, 2000.

P. G. Constantine, Active Subspaces: Emerging Ideas for Dimension Reduction in Parameter Studies
DOI : 10.1137/1.9781611973860

P. Diaz, P. Constantine, K. Kalmbach, E. Jones, and S. Pankavich, A modified SEIR model for the spread of Ebola in Western Africa and metrics for resource allocation, Applied Mathematics and Computation, vol.324, pp.141-155, 2018.
DOI : 10.1016/j.amc.2017.11.039

P. G. Constantine, E. Dow, and Q. Wang, Active Subspace Methods in Theory and Practice: Applications to Kriging Surfaces, SIAM Journal on Scientific Computing, vol.36, issue.4, pp.1500-1524, 2014.
DOI : 10.1137/130916138

URL : http://arxiv.org/pdf/1304.2070

=. Trrparam,

, n s ( ' l s q c u r v e f i t ' , ' D i s p l a y ' , ' i t e r ' , ... 53 ' Algorithm ' , ' t r u s t ?r e g i o n ? r e f l e c t i v e ' , ... 54 ' M a x I t e r a t i o n s, Algorithm, p.55

, 1 e ?007 56 1 e ?007 , ' F i n i t e D i f f e r e n c e T y p e '

, 59 result TRRparam = l s q c u r v e f i t (F , i n i t a l g u e s s , d a t a p o s , data , lb, 60 up

, e r s and IC 63 new param = [ Nh result TRRparam ( 1 : 3 ) Nv result TRRparam, 9 ) RH0 result TRRparam ( 1 0 ) ... 65 result TRRparam

, 68 Xh = Nh ? RH0 ? sum ( result TRRparam

, Xv = Nv ? sum ( result TRRparam

, 70 new IC ( 1 ) = result TRRparam ( 7 ) + Xh

, % I n t e g r a t e t h e new IVP 74 [ time y ] = ode45 (@( t , y ) rhs SEIR SEI ( t , y , new param ) , tspan , new IC )

, AbsTol ' , 1 . 0 e ?9) ; % ode45 o p t i o n s 76 Model r e s p o n s e 78 SH = y ( : , 1 )

, IH = y, vol.3

R. =. ,

E. =. ,

, IV = y, vol.7

, C = y, vol.8

, NewCases = C, issue.1

, * i ?7)/ dt +1 ) ? C( ( 7 * ( i ?1)?7)/ dt +1 )

, 86 end 87 88 %P l o t t i n g 89 %week t i m e s c a l e : time

, ) 91 p l o t ( time / 7 ,C) 92 h o l d on 93 s c a t t e r (, p.94

, 96 stem ( NewCasesData ) 97 h o l d on 98 stem ( NewCases ) Code 5: Inverse problem output function 1 f u n c t i o n F = TRR FunctionOutput ( variable TRRparam