L. Laureti, J. Demol, R. P. Fuchs, and V. Pagès, Bacterial Proliferation: Keep Dividing and Don't Mind the Gap, PLOS Genetics, vol.207, issue.12, 2015.
DOI : 10.1371/journal.pgen.1005757.s004

URL : https://hal.archives-ouvertes.fr/hal-01426227

E. C. Friedberg, Suffering in silence: the tolerance of DNA damage, Nature Reviews Molecular Cell Biology, vol.121, issue.12, pp.943-953, 2005.
DOI : 10.1038/nrm1781

J. E. Sale, Competition, collaboration and coordination - determining how cells bypass DNA damage, Journal of Cell Science, vol.125, issue.7, pp.1633-1643, 2012.
DOI : 10.1242/jcs.094748

URL : http://jcs.biologists.org/cgi/content/short/jcs.094748v1

W. D. Rupp, C. E. Wilde, D. L. Reno, and P. Howard-flanders, Exchanges between DNA strands in ultraviolet-irradiated Escherichia coli, Journal of Molecular Biology, vol.61, issue.1, pp.25-44, 1971.
DOI : 10.1016/0022-2836(71)90204-X

S. L. Lusetti and M. M. Cox, The Bacterial RecA Protein and the Recombinational DNA Repair of Stalled Replication Forks, Annual Review of Biochemistry, vol.71, issue.1, pp.71-100, 2002.
DOI : 10.1146/annurev.biochem.71.083101.133940

V. Pagès, G. Mazónmaz´mazón, K. Naiman, G. Philippin, and R. P. Fuchs, Monitoring bypass of single replication-blocking lesions by damage avoidance in the Escherichia coli chromosome, Nucleic Acids Research, vol.40, issue.18, pp.9036-9043, 2012.
DOI : 10.1093/nar/gks675

K. Naiman, G. Philippin, R. P. Fuchs, and V. Pagès, Chronology in lesion tolerance gives priority to genetic variability, Proceedings of the National Academy of Sciences, vol.111, issue.15, pp.5526-5531, 2014.
DOI : 10.1073/pnas.1321008111

URL : https://hal.archives-ouvertes.fr/hal-01446624

V. Pagès and R. P. Fuchs, Uncoupling of Leading- and Lagging-Strand DNA Replication During Lesion Bypass in Vivo, Science, vol.300, issue.5623, pp.1300-1303, 2003.
DOI : 10.1126/science.1083964

K. Higuchi, T. Katayama, S. Iwai, M. Hidaka, T. Horiuchi et al., Fate of DNA replication fork encountering a single DNA lesion during oriC plasmid DNA replication in vitro, Genes to Cells, vol.82, issue.5, pp.437-449, 2003.
DOI : 10.1038/35044005

J. T. Yeeles and K. J. Marians, Dynamics of Leading-Strand Lesion Skipping by the Replisome, Molecular Cell, vol.52, issue.6, pp.855-865, 2013.
DOI : 10.1016/j.molcel.2013.10.020

W. D. Rupp, Early days of DNA repair: discovery of nucleotide excision repair and homology-dependent recombinational repair, 2013.

A. Kuzminov, Recombinational repair of DNA damage in Escherichia coli and bacteriophage lambda, Microbiol. Mol. Biol. Rev, vol.63, pp.751-813, 1999.

S. C. Kowalczykowski, D. A. Dixon, A. K. Eggleston, S. D. Lauder, and W. M. Rehrauer, Biochemistry of homologous recombination in Escherichia coli, Microbiol. Rev, vol.58, pp.401-465, 1994.

K. Mcentee, G. M. Weinstock, and I. R. Lehman, Initiation of general recombination catalyzed in vitro by the recA protein of Escherichia coli., Proceedings of the National Academy of Sciences, vol.76, issue.6, pp.2615-2619, 1979.
DOI : 10.1073/pnas.76.6.2615

. Smith, Mechanism and Control of Homologous Recombination in Escherichia Coli, Annual Review of Genetics, vol.21, issue.1, pp.179-201, 1987.
DOI : 10.1146/annurev.ge.21.120187.001143

A. K. Adikesavan, P. Katsonis, D. C. Marciano, R. Lua, C. Herman et al., Separation of Recombination and SOS Response in Escherichia coli RecA Suggests LexA Interaction Sites, PLoS Genetics, vol.178, issue.9, p.1002244, 2011.
DOI : 10.1371/journal.pgen.1002244.s005

K. Morimatsu and S. C. Kowalczykowski, RecFOR Proteins Load RecA Protein onto Gapped DNA to Accelerate DNA Strand Exchange, Molecular Cell, vol.11, issue.5, pp.1337-1347, 2003.
DOI : 10.1016/S1097-2765(03)00188-6

E. Esnault, M. Valens, O. Espéli, B. , and F. , Chromosome Structuring Limits Genome Plasticity in Escherichia coli, PLoS Genetics, vol.334, issue.12, p.226, 2007.
DOI : 10.1371/journal.pgen.0030226.st001

K. A. Datsenko and B. L. Wanner, One-step inactivation of chromosomal genes in Escherichia coli K-12 using PCR products, Proceedings of the National Academy of Sciences, vol.97, issue.12, pp.6640-6645, 2000.
DOI : 10.1073/pnas.120163297

D. G. Ennis, A. S. Levine, W. H. Koch, and R. Woodgate, Analysis of recA mutants with altered SOS functions, Mutation Research/DNA Repair, vol.336, issue.1, pp.39-48, 1995.
DOI : 10.1016/0921-8777(94)00045-8

S. Sommer, J. Knezevic, A. Bailone, and R. Devoret, Induction of only one SOS operon, umuDC, is required for SOS mutagenesis in Escherichia coli, Mol. Gen. Genet, vol.239, pp.137-144, 1993.

P. Koehl, D. Burnouf, and R. P. Fuchs, Construction of plasmids containing a unique acetylaminofluorene adduct located within a mutation hot spot, Journal of Molecular Biology, vol.207, issue.2, pp.355-364, 1989.
DOI : 10.1016/0022-2836(89)90259-3

R. Napolitano, R. Janel-bintz, J. Wagner, and R. P. Fuchs, All three SOS-inducible DNA polymerases (Pol II, Pol IV and Pol V) are involved in induced mutagenesis, The EMBO Journal, vol.19, issue.22, pp.6259-6265, 2000.
DOI : 10.1093/emboj/19.22.6259

A. V. Mazin, E. Zaitseva, P. Sung, and S. C. Kowalczykowski, Tailed duplex DNA is the preferred substrate for Rad51 protein-mediated homologous pairing, The EMBO Journal, vol.11, issue.5, pp.1148-1156, 2000.
DOI : 10.1093/emboj/19.5.1148

S. Fujii, V. Gasser, and R. P. Fuchs, The Biochemical Requirements of DNA Polymerase V-mediated Translesion Synthesis Revisited, Journal of Molecular Biology, vol.341, issue.2, pp.405-417, 2004.
DOI : 10.1016/j.jmb.2004.06.017

T. Nohmi, J. R. Battista, L. A. Dodson, and G. C. Walker, RecA-mediated cleavage activates UmuD for mutagenesis: mechanistic relationship between transcriptional derepression and posttranslational activation., Proceedings of the National Academy of Sciences, vol.85, issue.6, pp.1816-1820, 1988.
DOI : 10.1073/pnas.85.6.1816

Q. Jiang, K. Karata, R. Woodgate, M. M. Cox, and M. F. Goodman, The active form of DNA polymerase V is UmuD???2C???RecA???ATP, Nature, vol.17, issue.7253, pp.359-363, 2009.
DOI : 10.1038/nature08178

B. B. Konforti and R. W. Davis, DNA substrate requirements for stable joint molecule formation by the RecA and single-stranded DNA-binding proteins of Escherichia coli, J. Biol. Chem, vol.266, pp.10112-10121, 1991.

P. L. Foster, Escherichia coli strains with multiple DNA repair defects are hyperinduced for the SOS response., Journal of Bacteriology, vol.172, issue.8, pp.4719-4720, 1990.
DOI : 10.1128/jb.172.8.4719-4720.1990

A. Kuzminov and F. W. Stahl, Double-strand end repair via the RecBC pathway in Escherichia coli primes DNA replication, Genes & Development, vol.13, issue.3, pp.345-356, 1999.
DOI : 10.1101/gad.13.3.345

J. J. Churchill, D. G. Anderson, and S. C. Kowalczykowski, The RecBC enzyme loads RecA protein onto ssDNA asymmetrically and independently of chi , resulting in constitutive recombination activation, Genes & Development, vol.13, issue.7, pp.901-911, 1999.
DOI : 10.1101/gad.13.7.901

D. G. Anderson and S. C. Kowalczykowski, The Translocating RecBCD Enzyme Stimulates Recombination by Directing RecA Protein onto ssDNA in a ??-Regulated Manner, Cell, vol.90, issue.1, pp.77-86, 1997.
DOI : 10.1016/S0092-8674(00)80315-3

J. Courcelle, C. Carswell-crumpton, and P. C. Hanawalt, recF and recR are required for the resumption of replication at DNA replication forks in Escherichia coli, Proceedings of the National Academy of Sciences, vol.94, issue.8, pp.3714-3719, 1997.
DOI : 10.1073/pnas.94.8.3714

B. Thoms and W. Wackernagel, Regulatory role of recF in the SOS response of Escherichia coli: impaired induction of SOS genes by UV irradiation and nalidixic acid in a recF mutant., Journal of Bacteriology, vol.169, issue.4, pp.1731-1736, 1987.
DOI : 10.1128/jb.169.4.1731-1736.1987

M. C. Whitby and R. G. Lloyd, Altered SOS induction associated with mutations in recF, recO and recR, MGG Molecular & General Genetics, vol.33, issue.2, pp.174-179, 1995.
DOI : 10.1007/BF00294680

S. Hegde, S. J. Sandler, A. J. Clark, and M. V. Madiraju, recO and recR mutations delay induction of the SOS response in Escherichia coli, MGG Molecular & General Genetics, vol.100, issue.2, pp.254-258, 1995.
DOI : 10.1007/BF00294689

S. Fujii, A. Isogawa, and R. P. Fuchs, RecFOR proteins are essential for Pol V-mediated translesion synthesis and mutagenesis, The EMBO Journal, vol.11, issue.24, pp.5754-5763, 2006.
DOI : 10.1038/sj.emboj.7601474

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1698908

S. Fujii and R. P. Fuchs, Biochemical basis for the essential genetic requirements of RecA and the ??-clamp in Pol V activation, Proceedings of the National Academy of Sciences, vol.106, issue.35, pp.14825-14830, 2009.
DOI : 10.1073/pnas.0905855106

K. Y. Seo, A. Nagalingam, S. Miri, J. Yin, S. Chandani et al., Mirror image stereoisomers of the major benzo[a]pyrene N2-dG adduct are bypassed by different lesion-bypass DNA polymerases in E. coli, DNA Repair, vol.5, issue.4, pp.515-522, 2006.
DOI : 10.1016/j.dnarep.2005.12.009

X. Shen, J. M. Sayer, H. Kroth, I. Ponten, M. Donnell et al., Efficiency and Accuracy of SOS-induced DNA Polymerases Replicating Benzo[a]pyrene-7,8-diol 9,10-Epoxide A and G Adducts, Journal of Biological Chemistry, vol.277, issue.7, pp.5265-5274, 2002.
DOI : 10.1074/jbc.M109575200

M. Ikeda, A. Furukohri, G. Philippin, E. Loechler, M. T. Akiyama et al., -dG adducts, Nucleic Acids Research, vol.42, issue.13, pp.8461-8472, 2014.
DOI : 10.1093/nar/gku547

URL : https://hal.archives-ouvertes.fr/hal-00002011

R. C. Heller and K. J. Marians, Replication fork reactivation downstream of a blocked nascent leading strand, Nature, vol.49, issue.7076, pp.557-562, 2006.
DOI : 10.1038/nature04329

S. Fujii and R. P. Fuchs, Defining the position of the switches between replicative and bypass DNA polymerases, The EMBO Journal, vol.85, issue.21, pp.4342-4352, 2004.
DOI : 10.1016/S1568-7864(01)00012-X

J. Courcelle and P. C. Hanawalt, RecA-Dependent Recovery of Arrested DNA Replication Forks, Annual Review of Genetics, vol.37, issue.1, pp.611-646, 2003.
DOI : 10.1146/annurev.genet.37.110801.142616

R. P. Fuchs and S. Fujii, Translesion DNA Synthesis and Mutagenesis in Prokaryotes, Cold Spring Harbor Perspectives in Biology, vol.5, issue.12, pp.1-22, 2013.
DOI : 10.1101/cshperspect.a012682

M. E. Robu, R. B. Inman, and M. M. Cox, RecA protein promotes the regression of stalled replication forks in vitro, Proceedings of the National Academy of Sciences, vol.98, issue.15, pp.8211-8218, 2001.
DOI : 10.1073/pnas.131022698

V. Pagès, Single-strand gap repair involves both RecF and RecBCD pathways, Current Genetics, vol.156, issue.3, 2016.
DOI : 10.1128/9781555817640.ch21