Evolution of Self-Organized Task Specialization in Robot Swarms

Abstract : Division of labor is ubiquitous in biological systems, as evidenced by various forms of complex task specialization observed in both animal societies and multicellular organisms. Although clearly adaptive, the way in which division of labor first evolved remains enigmatic, as it requires the simultaneous co-occurrence of several complex traits to achieve the required degree of coordination. Recently, evolutionary swarm robotics has emerged as an excellent test bed to study the evolution of coordinated group-level behavior. Here we use this framework for the first time to study the evolutionary origin of behavioral task specialization among groups of identical robots. The scenario we study involves an advanced form of division of labor, common in insect societies and known as " task partitioning " , whereby two sets of tasks have to be carried out in sequence by different individuals. Our results show that task partitioning is favored whenever the environment has features that, when exploited, reduce switching costs and increase the net efficiency of the group, and that an optimal mix of task specialists is achieved most readily when the behavioral repertoires aimed at carrying out the different subtasks are available as pre-adapted building blocks. Nevertheless, we also show for the first time that self-organized task specialization could be evolved entirely from scratch, starting only from basic, low-level behavioral primitives, using a nature-inspired evolutionary method known as Grammatical Evolution. Remarkably, division of labor was achieved merely by selecting on overall group performance, and without providing any prior information on how the global object retrieval task was best divided into smaller subtasks. We discuss the potential of our method for engineering adaptively behaving robot swarms and interpret our results in relation to the likely path that nature took to evolve complex sociality and task specialization. Author Summary Many biological systems execute tasks by dividing them into finer sub-tasks first. This is seen for example in the advanced division of labor of social insects like ants, bees or termites. One of the unsolved mysteries in biology is how a blind process of Darwinian PLOS Computational Biology |
Complete list of metadatas

Cited literature [86 references]  Display  Hide  Download

https://hal.archives-ouvertes.fr/hal-01378166
Contributor : Eliseo Ferrante <>
Submitted on : Sunday, October 9, 2016 - 7:31:25 AM
Last modification on : Friday, February 22, 2019 - 1:48:04 PM
Long-term archiving on : Tuesday, January 10, 2017 - 12:19:21 PM

File

2015_PlosComputationalBiology....
Publisher files allowed on an open archive

Identifiers

Collections

Citation

Eliseo Ferrante, Ali Turgut, Edgar Duéñez-Guzmán, Marco Dorigo, Tom Wenseleers. Evolution of Self-Organized Task Specialization in Robot Swarms. PLoS Computational Biology, Public Library of Science, 2015, 11, pp.1004273 - 1004273. ⟨10.1371/journal.pcbi.1004273.s009⟩. ⟨hal-01378166⟩

Share

Metrics

Record views

247

Files downloads

112