Spike pattern recognition by supervised classification in low dimensional embedding space

Abstract : Epileptiform discharges in interictal electroencephalography (EEG) form the mainstay of epilepsy diagnosis and localization of seizure onset. Visual analysis is rater-dependent and time consuming, especially for long-term recordings, while computerized methods can provide efficiency in reviewing long EEG recordings. This paper presents a machine learning approach for automated detection of epileptiform discharges (spikes). The proposed method first detects spike patterns by calculating similarity to a coarse shape model of a spike waveform and then refines the results by identifying subtle differences between actual spikes and false detections. Pattern classification is performed using Support Vector Machines (SVM) in a low dimensional space on which the original waveforms are embedded by Locality Preserving Projections (LPP). The automatic detection results are compared to experts' manual annotations (101 spikes) on a whole-night sleep EEG recording. The high sensitivity (97%) and the low false positive rate (0.1 min-1), calculated by intra-patient cross-validation, highlight the potential of the method for automated interictal EEG assessment.
Liste complète des métadonnées

Littérature citée [16 références]  Voir  Masquer  Télécharger

https://hal.archives-ouvertes.fr/hal-01359155
Contributeur : Evangelia Zacharaki <>
Soumis le : jeudi 1 septembre 2016 - 23:00:31
Dernière modification le : jeudi 7 février 2019 - 17:29:18

Fichiers

SpikeDetection_BrainInf_revise...
Fichiers produits par l'(les) auteur(s)

Identifiants

Citation

Evangelia I. Zacharaki, Iosif Mporas, Kyriakos Garganis, Vasileios Megalooikonomou. Spike pattern recognition by supervised classification in low dimensional embedding space. Brain Informatics, Springer, 2016, 〈10.1007/s40708-016-0044-4〉. 〈hal-01359155〉

Partager

Métriques

Consultations de la notice

278

Téléchargements de fichiers

307