A Discrete MRF Framework for Integrated Multi-Atlas Registration and Segmentation

Abstract : Multi-atlas segmentation has emerged in recent years as a simple yet powerful approach in medical image segmentation. It commonly comprises two steps: i) a series of pairwise registrations that establish correspondences between a query image and a number of atlases, and ii) the fusion of the available seg-mentation hypotheses towards labeling objects of interest. In this paper, we introduce a novel approach that solves simultaneously for the underlying segmentation labels and the multi-atlas registration. The proposed approach is formulated as a pairwise Markov Random Field, where registration and segmentation nodes are coupled towards simultaneously recovering all atlas deformations and labeling the query image. The coupling is achieved by promoting the consistency between selected deformed atlas segmentations and the estimated query segmentation. Additional membership fields are estimated, determining the participation of each atlas in labeling each voxel. Inference is performed by using a sequential relaxation scheme. The proposed approach is validated on the IBSR dataset and is compared against standard post-registration label fusion strategies. Promising results demonstrate the potential of our method.
Type de document :
Article dans une revue
International Journal of Computer Vision, Springer Verlag, 2017, 〈10.1007/s11263-016-0925-2〉
Liste complète des métadonnées

Littérature citée [39 références]  Voir  Masquer  Télécharger

https://hal.archives-ouvertes.fr/hal-01359094
Contributeur : Evangelia Zacharaki <>
Soumis le : vendredi 2 septembre 2016 - 09:42:14
Dernière modification le : jeudi 7 février 2019 - 17:29:17
Document(s) archivé(s) le : lundi 5 décembre 2016 - 00:53:27

Fichier

IJCV_revised.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

Citation

Stavros Alchatzidis, Aristeidis Sotiras, Evangelia I. Zacharaki, Nikos Paragios. A Discrete MRF Framework for Integrated Multi-Atlas Registration and Segmentation. International Journal of Computer Vision, Springer Verlag, 2017, 〈10.1007/s11263-016-0925-2〉. 〈hal-01359094〉

Partager

Métriques

Consultations de la notice

593

Téléchargements de fichiers

251