S. Abrate, Impact on Composite Structures, 1998.
DOI : 10.1017/CBO9780511574504

S. Rivallant, J. Ferrero, and J. Barrau, Dynamic buckling of foam stabilised composite skin, Composite Structures, vol.72, issue.4, p.486, 2006.
DOI : 10.1016/j.compstruct.2005.01.032

I. Tawk, A. J. Navarro, and P. , Study of impact on helicopter blade, Engineering Failure Analysis, vol.24, issue.0, pp.38-45, 2012.
DOI : 10.1016/j.engfailanal.2012.03.005

URL : https://hal.archives-ouvertes.fr/hal-00390728

P. Ma, F. Zhang, and Z. Gao, Transverse impact behaviors of glass warp-knitted fabric/foam sandwich composites through carbon nanotubes incorporation, Composites Part B: Engineering, vol.56, issue.0, pp.847-856, 2014.
DOI : 10.1016/j.compositesb.2013.09.013

K. Ramakrishnan, S. Guérard, and P. Viot, Effect of block copolymer nano-reinforcements on the low velocity impact response of sandwich structures, Composite Structures, vol.110, issue.0, pp.174-182, 2014.
DOI : 10.1016/j.compstruct.2013.12.001

URL : https://hal.archives-ouvertes.fr/hal-00925232

N. Anbusagar, P. Giridharan, and K. Palanikumar, Effect of nanomodified polyester resin on hybrid sandwich laminates, Materials & Design (1980-2015), vol.54, issue.0, pp.507-514, 2014.
DOI : 10.1016/j.matdes.2013.08.025

G. Villanueva and W. Cantwell, The high velocity impact response of composite and FML-reinforced sandwich structures, Composites Science and Technology, vol.64, issue.1, pp.35-54, 2004.
DOI : 10.1016/S0266-3538(03)00197-0

H. Zhou, Z. Pan, and G. Rk, Experimental and numerical investigation of the transverse impact damage and deformation of 3-D circular braided composite tubes from meso-structure approach, Composites Part B: Engineering, vol.86, pp.243-253, 2016.
DOI : 10.1016/j.compositesb.2015.10.019

T. Anderson and E. Madenci, Experimental investigation of low-velocity impact characteristics of sandwich composites, Composite Structures, vol.50, issue.3, pp.239-247, 2000.
DOI : 10.1016/S0263-8223(00)00098-2

M. Hazizan and W. Cantwell, The low velocity impact response of foam-based sandwich structures, Composites Part B: Engineering, vol.33, issue.3, pp.193-204, 2002.
DOI : 10.1016/S1359-8368(02)00009-4

J. Zhou, M. Hassan, and Z. Guan, The low velocity impact response of foam-based sandwich panels, Composites Science and Technology, vol.72, issue.14, pp.1781-1790, 2012.
DOI : 10.1016/j.compscitech.2012.07.006

M. Hassan and W. Cantwell, The influence of core properties on the perforation resistance of sandwich structures ??? An experimental study, Composites Part B: Engineering, vol.43, issue.8, pp.3231-3238, 2012.
DOI : 10.1016/j.compositesb.2012.03.012

R. Nasirzadeh and A. Sabet, Study of foam density variations in composite sandwich panels under high velocity impact loading, International Journal of Impact Engineering, vol.63, issue.0, pp.129-139, 2014.
DOI : 10.1016/j.ijimpeng.2013.08.009

N. Gardner, E. Wang, and A. Shukla, Performance of functionally graded sandwich composite beams under shock wave loading, Composite Structures, vol.94, issue.5, pp.1755-1770, 2012.
DOI : 10.1016/j.compstruct.2011.12.006

J. Zhou, Z. Guan, and W. Cantwell, The impact response of graded foam sandwich structures, Composite Structures, vol.97, issue.0, p.370, 2013.
DOI : 10.1016/j.compstruct.2012.10.037

G. Pitarresi, J. Carruthers, and A. Robinson, A comparative evaluation of crashworthy composite sandwich structures, Composite Structures, vol.78, issue.1, pp.34-44, 2007.
DOI : 10.1016/j.compstruct.2005.08.008

G. Li and V. Muthyala, Impact characterization of sandwich structures with an integrated orthogrid stiffened syntactic foam core, Composites Science and Technology, vol.68, issue.9, pp.2078-2084, 2008.
DOI : 10.1016/j.compscitech.2008.03.014

G. Zhang, B. Wang, and L. Ma, Energy absorption and low velocity impact response of polyurethane foam filled pyramidal lattice core sandwich panels, Composite Structures, vol.108, issue.0, pp.304-310, 2014.
DOI : 10.1016/j.compstruct.2013.09.040

A. Vaidya, U. Vaidya, and N. Uddin, Impact response of three-dimensional multifunctional sandwich composite, Materials Science and Engineering: A, vol.472, issue.1-2, pp.52-58, 2008.
DOI : 10.1016/j.msea.2007.03.064

B. Wang, L. Wu, and J. X. , Experimental investigation of 3D sandwich structure with core reinforced by composite columns, Materials & Design, vol.31, issue.1, pp.158-165, 2010.
DOI : 10.1016/j.matdes.2009.06.039

J. Zhou, Z. Guan, and W. Cantwell, The energy-absorbing behaviour of foam cores reinforced with composite rods, Composite Structures, vol.116, issue.0, pp.346-356, 2014.
DOI : 10.1016/j.compstruct.2014.05.025

U. Vaidya, S. Nelson, and B. Sinn, Processing and high strain rate impact response of multi-functional sandwich composites, Composite Structures, vol.52, issue.3-4, pp.3-4, 2001.
DOI : 10.1016/S0263-8223(01)00033-2

A. Nanayakkara, S. Feih, and A. Mouritz, Experimental analysis of the through-thickness compression properties of z-pinned sandwich composites, Composites Part A: Applied Science and Manufacturing, vol.42, issue.11, pp.1673-1680, 2011.
DOI : 10.1016/j.compositesa.2011.07.020

L. Stanley and A. Do, Development and evaluation of stitched sandwich panels, 2001.

B. Lascoup, Z. Aboura, and K. Khellil, On the mechanical effect of stitch addition in sandwich panel, Composites Science and Technology, vol.66, issue.10, pp.1385-1398, 2006.
DOI : 10.1016/j.compscitech.2005.09.005

P. Potluri, E. Kusak, and T. Reddy, Novel stitch-bonded sandwich composite structures, Composite Structures, vol.59, issue.2, pp.251-259, 2003.
DOI : 10.1016/S0263-8223(02)00087-9

F. Xia and X. Wu, Study on impact properties of through-thickness stitched foam sandwich composites, Composite Structures, vol.92, issue.2, pp.412-421, 2010.
DOI : 10.1016/j.compstruct.2009.08.016

Z. Guan, A. Aktas, and P. Potluri, The blast resistance of stitched sandwich panels, International Journal of Impact Engineering, vol.65, pp.137-145, 2014.
DOI : 10.1016/j.ijimpeng.2013.12.001

P. Singh, V. Saponara, and . Structures, Experimental Investigation on Performance of Angle-Stitched Sandwich Structures, 45th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics & Materials Conference, 2004.
DOI : 10.2514/6.2004-1705

B. Lascoup, Z. Aboura, and K. Khellil, Impact response of three-dimensional stitched sandwich composite, Composite Structures, vol.92, issue.2, pp.347-353, 2010.
DOI : 10.1016/j.compstruct.2009.08.012

S. Samlal, V. Paulson, and R. Santhanakrishnan, Effect of stitching angle on impact characteristics of sandwich panels, International Journal of Innovative Research in Science, Eingineering and Technology, 2015.

S. Tekalur, A. Bogdanovich, and A. Shukla, Shock loading response of sandwich panels with 3-D woven E-glass composite skins and stitched foam core, ONR -Dynamic Failure and Durability, pp.736-753, 2009.
DOI : 10.1016/j.compscitech.2008.03.017

D. Feng and F. Aymerich, Damage prediction in composite sandwich panels subjected to low-velocity impact, Composites Part A: Applied Science and Manufacturing, vol.52, issue.0, pp.12-22, 2013.
DOI : 10.1016/j.compositesa.2013.04.010

O. Dorival, P. Navarro, and S. Marguet, Experimental study of impact energy absorption by reinforced braided composite structures: Dynamic crushing tests, Composites Part B: Engineering, vol.78, pp.244-255, 2015.
DOI : 10.1016/j.compositesb.2015.03.083

URL : https://hal.archives-ouvertes.fr/hal-01183142

J. Passieux, P. Navarro, and J. Périé, A Digital Image Correlation Method For Tracking Planar Motions Of Rigid Spheres: Application To Medium Velocity Impacts, Experimental Mechanics, vol.35, issue.1, pp.1453-1466, 2014.
DOI : 10.1007/s11340-014-9930-y

URL : https://hal.archives-ouvertes.fr/hal-01025172