Power Laws Variance Scaling of Boolean Random Varieties

Abstract : Long fibers or stratifed media show very long range correlations. These media can be simulated by models of Boolean random varieties and their iteration. They show non standard scaling laws with respect to the volume of domains K for the variance of the local volume fraction: on a large scale, the variance of the local volume fraction decreases according to power laws of the volume of K. The exponent is equal to (n-k)/ n for Boolean varieties with dimension k in the space Rn : 2/3 for Boolean fibers in 3D, and 1/3 for Boolean strata in 3D. When working in 2D, the scaling exponent of Boolean fibers is equal to 1/2. From the results of numerical simulations, these scaling laws are expected to hold for the prediction of the effective properties of such random media.
Type de document :
Article dans une revue
Methodology and Computing in Applied Probability, Springer Verlag, 2015, 〈10.1007/s11009-015-9464-5〉
Liste complète des métadonnées

Littérature citée [19 références]  Voir  Masquer  Télécharger

https://hal-mines-paristech.archives-ouvertes.fr/hal-01207456
Contributeur : Dominique Jeulin <>
Soumis le : mercredi 30 septembre 2015 - 19:50:50
Dernière modification le : vendredi 27 octobre 2017 - 17:36:02
Document(s) archivé(s) le : jeudi 31 décembre 2015 - 11:03:53

Fichier

RVE-Poisson-Var-v6a.pdf
Accord explicite pour ce dépôt

Identifiants

Collections

Citation

Dominique Jeulin. Power Laws Variance Scaling of Boolean Random Varieties. Methodology and Computing in Applied Probability, Springer Verlag, 2015, 〈10.1007/s11009-015-9464-5〉. 〈hal-01207456〉

Partager

Métriques

Consultations de la notice

218

Téléchargements de fichiers

263