Skip to Main content Skip to Navigation
Conference papers

Degree distribution in random planar graphs

Abstract : We prove that for each $k \geq 0$, the probability that a root vertex in a random planar graph has degree $k$ tends to a computable constant $d_k$, and moreover that $\sum_k d_k =1$. The proof uses the tools developed by Gimènez and Noy in their solution to the problem of the asymptotic enumeration of planar graphs, and is based on a detailed analysis of the generating functions involved in counting planar graphs. However, in order to keep track of the degree of the root, new technical difficulties arise. We obtain explicit, although quite involved expressions, for the coefficients in the singular expansions of interest, which allow us to use transfer theorems in order to get an explicit expression for the probability generating function $p(w)=\sum_k d_k w^k$. From the explicit expression for $p(w)$ we can compute the $d_k$ to any degree of accuracy, and derive asymptotic estimates for large values of $k$.
Complete list of metadata

Cited literature [22 references]  Display  Hide  Download

https://hal.inria.fr/hal-01194677
Contributor : Coordination Episciences Iam <>
Submitted on : Monday, September 7, 2015 - 12:51:00 PM
Last modification on : Monday, November 16, 2020 - 3:56:03 PM
Long-term archiving on: : Tuesday, December 8, 2015 - 12:58:10 PM

File

dmAI0109.pdf
Publisher files allowed on an open archive

Identifiers

  • HAL Id : hal-01194677, version 1

Collections

Citation

Michael Drmota, Omer Gimenez, Marc Noy. Degree distribution in random planar graphs. Fifth Colloquium on Mathematics and Computer Science, 2008, Kiel, Germany. pp.163-178. ⟨hal-01194677⟩

Share

Metrics

Record views

203

Files downloads

802