D. [. Applebaum, P. Bafico, and . Baldi, Lévy processes and stochastic calculus Small random perturbations of peano phenomena, Stochastics, vol.6, pp.3-4279, 1982.

K. Bichteler, J. B. Gravereaux, and J. Jacod, Malliavin calculus for processes with jumps, 1987.

V. Bally, A. Kohatsu-higabp09, ]. R. Bass, and E. A. Perkins, A probabilistic interpretation of the parametrix method A new technique for proving uniqueness for martingale problems. From Probability to Geometry (I): Volume in Honor of the 60th Birthday of Jean-Michel Bismut Estimates of the potential kernel and Harnack's inequality for the anisotropic fractional Laplacian, Studia Math, vol.181, issue.2, pp.47-53101, 2007.

F. Delarue and F. Flandoli, The transition point in the zero noise limit for a 1D Peano example, Discrete and Continuous Dynamical Systems, vol.34, issue.10, pp.4071-4083, 2014.
DOI : 10.3934/dcds.2014.34.4071

URL : https://hal.archives-ouvertes.fr/hal-00789830

F. Delarue and S. Menozzi, Density estimates for a random noise propagating through a chain of differential equations, Journal of Functional Analysis, vol.259, issue.6, pp.1577-1630, 2010.
DOI : 10.1016/j.jfa.2010.05.002

URL : https://hal.archives-ouvertes.fr/hal-00436051

S. D. Eidelman, S. D. Ivasyshen, A. N. Kochubeifri64, ]. Huang, and S. Menozzi, Analytic methods in the theory of differential and pseudo-differential equations of parabolic type, volume 152 of Operator Theory: Advances and Applications Partial differential equations of parabolic type Density bounds for some degenerate stable driven sdes, [Jac05] N. Jacob. Pseudo differential operators and Markov processes Knopova and A. Kulik. Parametrix method and the weak solution to an sde driven by an ?-stable noise. arXiv, p.1412, 1964.

V. Konakov, S. Menozzi, and S. Molchanov, Explicit parametrix and local limit theorems for some degenerate diffusion processes. Annales de l'Institut Henri Poincaré, Série B, pp.46-4908, 2010.
URL : https://hal.archives-ouvertes.fr/hal-00256588

A. N. Kochubei, Parabolic pseudodifferential equations, hypersingular integrals, and markov processes Mathematics of the USSR-Izvestiya, Kol00] V. Kolokoltsov. Symmetric stable laws and stable-like diffusion. Proceedings of the, pp.233-80725, 1989.

T. Komatsu, On the martingale problem for pseudo-differential operators of variable order, Theory Stoch. Process, vol.14, issue.2, pp.42-51, 2008.

D. [. Kusuoka, . [. Stroock, D. Kusuoka, and . Stroock, Applications of the Malliavin calculus. I. Stochastic analysis Applications of the Malliavin calculus. II Upper estimates of transition densities for stable-dominated semigroups, North- Holland Math. LibraryKS87] S. Kusuoka and D. Stroock. Applications of the Malliavin calculus, pp.271-3061, 1982.

S. Menozzi, Parametrix techniques and martingale problems for some degenerate Kolmogorov equations, Electronic Communications in Probability, vol.16, issue.0, pp.234-250, 2011.
DOI : 10.1214/ECP.v16-1619

H. , M. Kean, and I. Singer, Curvature and eigen values of the Laplacian Simplified Malliavin calculus, Séminaire de Probabilités, XX, pp.43-69, 1967.

J. J. Picardshe91-]-s and . Sheu, Lévy processes and Infinitely divisible Distributions Some estimates of the transition density of a nondegenerate diffusion Markov process Diffusion processes associated with Lévy generators. Probability Theory and Related Fields, Probability Theory and Related FieldsStr75] D. W. Stroock Stroock and S.R.S. Varadhan. Multidimensional diffusion processes, pp.481-511, 1975.

T. Watanabe, Asymptotic estimates of multi-dimensional stable densities and their applications. Transactions of the, pp.2851-2879, 2007.

X. Zhang and C. , Heat kernels and analyticity of non-symmetric jump diffusion semigroups, 2013.