Density Estimates for a Random Noise Propagating through a Chain of Differential Equations

Abstract : We here provide two sided bounds for the density of the solution of a system of n differential equations of dimension d, the first one being forced by a non-degenerate random noise and the (n-1) other ones being degenerate. The system formed by the n equations satisfies a suitable Hörmander condition: the second equation feels the noise plugged into the first equation, the third equation feels the noise transmitted from the first to the second equation and so on..., so that the noise propagates one way through the system. When the coefficients of the system are Lipschitz continuous, we show that the density of the solution satisfies Gaussian bounds with non-diffusive time scales. The proof relies on the interpretation of the density of the solution as the value function of some optimal stochastic control problem.
Type de document :
Article dans une revue
Journal of Functional Analysis, Elsevier, 2010, 259, pp.1577--1630
Liste complète des métadonnées

https://hal.archives-ouvertes.fr/hal-00436051
Contributeur : Francois Delarue <>
Soumis le : mercredi 25 novembre 2009 - 20:21:00
Dernière modification le : mardi 11 octobre 2016 - 14:05:08
Document(s) archivé(s) le : jeudi 17 juin 2010 - 18:43:38

Fichier

Delarue_Menozzi_Density.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

  • HAL Id : hal-00436051, version 1

Collections

Citation

François Delarue, Stéphane Menozzi. Density Estimates for a Random Noise Propagating through a Chain of Differential Equations. Journal of Functional Analysis, Elsevier, 2010, 259, pp.1577--1630. <hal-00436051>

Partager

Métriques

Consultations de
la notice

395

Téléchargements du document

222