Local Mutual Information for Dissimilarity-Based Image Segmentation

Abstract : Connective segmentation based on the definition of a dissimilarity measure on pairs of adjacent pixels is an appealing framework to develop new hierarchical segmentation methods. Usually, the dissimilarity is fully determined by the intensity values of the considered pair of adjacent pixels, so that it is independent of the values of the other image pixels. In this paper, we explore dissimilarity measures depending on the overall image content encapsulated in its local mutual information and show its invariance to information preserving transforms. This is investigated in the framework of the connective segmentation and constrained connectivity paradigms and leads to the concept of dependent connectivities. An efficient probability estimator based on depth functions is proposed to handle multi-dimensional images. Experiments conducted on hyper-spectral and multiangular remote sensing images highlight the robustness of the proposed approach
Type de document :
Article dans une revue
Journal of Mathematical Imaging and Vision, Springer Verlag, 2014, 48 (3), pp.625-644
Liste complète des métadonnées

Littérature citée [59 références]  Voir  Masquer  Télécharger

Contributeur : Santiago Velasco-Forero <>
Soumis le : mercredi 28 janvier 2015 - 16:57:15
Dernière modification le : lundi 12 novembre 2018 - 10:59:34
Document(s) archivé(s) le : mercredi 29 avril 2015 - 10:20:57


Local Mutual Information for d...
Fichiers produits par l'(les) auteur(s)


  • HAL Id : hal-01110199, version 1



Lionel Gueguen, Santiago Velasco-Forero, Pierre Soille. Local Mutual Information for Dissimilarity-Based Image Segmentation. Journal of Mathematical Imaging and Vision, Springer Verlag, 2014, 48 (3), pp.625-644. 〈hal-01110199〉



Consultations de la notice


Téléchargements de fichiers