Skip to Main content Skip to Navigation
Journal articles

Notes on Metric Independent Analysis of Classical Fields

Abstract : A metric independent geometric framework for some fundamental objects of continuum mechanics is presented. In the geometric setting of general differentiable manifolds, balance principles for extensive properties are formulated and Cauchy's theorem for fluxes is proved. Fluxes in an n-dimensional space are represented as differential (n − 1)-forms. In an analogous formulation of stress theory, a distinction is made between the traction stress, enabling the evaluation of the traction on the boundaries of the various regions, and the variational stress, which acts on the derivative of a virtual velocity field to produce the virtual power density. The relation between the two stress fields is examined as well as the resulting differential balance law. As an application, metric-invariant aspects of electromagnetic theory are presented within the framework of the foregoing flux and stress theory.
Complete list of metadata

Cited literature [10 references]  Display  Hide  Download
Contributor : Christian Cardillo <>
Submitted on : Thursday, September 25, 2014 - 12:15:26 PM
Last modification on : Monday, July 22, 2019 - 11:46:01 AM
Long-term archiving on: : Friday, December 26, 2014 - 10:31:59 AM


Files produced by the author(s)


  • HAL Id : hal-01068262, version 1



Reuven Segev. Notes on Metric Independent Analysis of Classical Fields. Mathematical Methods in the Applied Sciences, Wiley, 2013, 36 (5), pp.497-566. ⟨hal-01068262⟩



Record views


Files downloads