The image of the Borel-Serre bordification in algebraic K-theory

Abstract : We give a method for constructing explicit non-trivial elements in the third K-group (modulo torsion) of an imaginary quadratic number field. These arise from the relative homology of the map attaching the Borel-Serre boundary to the orbit space of the SL_2 group over the ring of imaginary quadratic integers on its symmetric space - hyperbolic three-space. We provide an algorithm which produces a chain of matrix quadruples specifying our element of K_3 of the field, modulo torsion. We carry out the algorithm for the Eisenteinian integers as well as for the imaginary quadratic integers of discriminant -7.
Document type :
Preprints, Working Papers, ...
2014


https://hal.archives-ouvertes.fr/hal-00975454
Contributor : Alexander Rahm <>
Submitted on : Tuesday, April 8, 2014 - 4:30:27 PM
Last modification on : Tuesday, April 8, 2014 - 4:33:38 PM

Files

de_Jeu_and_Rahm.pdf
fileSource_public_author

Identifiers

  • HAL Id : hal-00975454, version 1

Collections

Citation

Rob De Jeu, Alexander Rahm. The image of the Borel-Serre bordification in algebraic K-theory. 2014. <hal-00975454>

Export

Share

Metrics

Consultation de
la notice

100

Téléchargement du document

22