Semi-Supervised Hyperspectral Image Segmentation Using Regionalized Stochastic Watershed

Abstract : Stochastic watershed is a robust method to estimate the probability density function (pdf) of contours of a multi-variate image using MonteCarlo simulations of watersheds from random markers. The aim of this paper is to propose a stochastic watershed-based algorithm for segmenting hyperspectral images using a semi-supervised approach. Starting from a training dataset consisting in a selection of representative pixel vectors of each spectral class of the image, the algorithm calculate for each class a membership probability map (MPM). Then, the MPM of class k is considered as a regionalized density function which is used to simulate the random markers for the MonteCarlo estimation of the pdf of contours of the corresponding class k. This pdf favours the spatial regions of the image spectrally close to the class k. After applying the same technique to each class, a series of pdf are obtained for a single image. Finally, the pdf's can be segmented hierarchically either separately for each class or after combination, as a single pdf function. In the results, besides the generic spatial-spectral segmentation of hyperspectral images, the interest of the approach is also illustrated for target segmentation.
Type de document :
Communication dans un congrès
Sylvia S. Shen and Paul E. Lewis. Algorithms and Technologies for Multispectral, Hyperspectral, and Ultraspectral Imagery XVI, May 2010, Orlando, United States. SPIE - The International Society for Optical Engineering, 7695F, 12 p., 2010, 〈10.1117/12.850187〉
Liste complète des métadonnées

Littérature citée [18 références]  Voir  Masquer  Télécharger

https://hal-mines-paristech.archives-ouvertes.fr/hal-00834482
Contributeur : Bibliothèque Mines Paristech <>
Soumis le : samedi 15 juin 2013 - 15:13:13
Dernière modification le : vendredi 27 octobre 2017 - 17:36:02
Document(s) archivé(s) le : lundi 16 septembre 2013 - 04:04:42

Fichier

AnguloVelasco_SPIE10.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

Collections

Citation

Jesus Angulo, Santiago Velasco-Forero. Semi-Supervised Hyperspectral Image Segmentation Using Regionalized Stochastic Watershed. Sylvia S. Shen and Paul E. Lewis. Algorithms and Technologies for Multispectral, Hyperspectral, and Ultraspectral Imagery XVI, May 2010, Orlando, United States. SPIE - The International Society for Optical Engineering, 7695F, 12 p., 2010, 〈10.1117/12.850187〉. 〈hal-00834482〉

Partager

Métriques

Consultations de la notice

129

Téléchargements de fichiers

93