R. Atkinson, Atmospheric chemistry of VOCs and NOx, Atmospheric Environment, vol.34, issue.12-14, pp.2063-2101, 2000.
DOI : 10.1016/S1352-2310(99)00460-4

S. Sillman, Tropospheric Ozone and Photochemical Smog, Treatise on Geochemistry, pp.407-431, 2003.

Y. Zhang, M. Bocquet, V. Mallet, C. Seigneur, and A. Baklanov, Real-time air quality forecasting, part I: History, techniques, and current status, Atmospheric Environment, vol.60, pp.632-655, 2012.
DOI : 10.1016/j.atmosenv.2012.06.031

URL : https://hal.archives-ouvertes.fr/hal-00761344

Y. Zhang, M. Bocquet, V. Mallet, C. Seigneur, and A. Baklanov, Real-time air quality forecasting, part II: State of the science, current research needs, and future prospects, Atmospheric Environment, vol.60, pp.656-676, 2012.
DOI : 10.1016/j.atmosenv.2012.02.041

URL : https://hal.archives-ouvertes.fr/hal-00761347

W. Mcculloch and W. Pitts, A logical calculus of the ideas immanent in nervous activity, The Bulletin of Mathematical Biophysics, vol.5, issue.4, pp.115-133, 1943.
DOI : 10.1007/BF02478259

M. Gardner and S. Dorling, Artificial neural networks (the multilayer perceptron)???a review of applications in the atmospheric sciences, Atmospheric Environment, vol.32, issue.14-15, pp.2627-2636, 1998.
DOI : 10.1016/S1352-2310(97)00447-0

G. Zhang, G. Rozenberg, T. Bäck, and J. Kok, Neural Networks for Time-Series Forecasting, Handbook of Natural Computing, pp.2012-461
DOI : 10.1007/978-3-540-92910-9_14

J. Yi and V. Prybutok, A neural network model forecasting for prediction of daily maximum ozone concentration in an industrialized urban area, Environmental Pollution, vol.92, issue.3, pp.349-357, 1996.
DOI : 10.1016/0269-7491(95)00078-X

K. Hornik, M. Stinchcombe, and H. White, Multilayer feedforward networks are universal approximators, Multilayer feedforward networks are universal approximators, pp.359-366, 1989.
DOI : 10.1016/0893-6080(89)90020-8

G. Corani, Air quality prediction in Milan: feed-forward neural networks, pruned neural networks and lazy learning, Ecological Modelling, vol.185, issue.2-4, pp.513-529, 2005.
DOI : 10.1016/j.ecolmodel.2005.01.008

G. Ibarra-berastegi, A. Elias, A. Barona, J. Saenz, A. Ezcurra et al., From diagnosis to prognosis for forecasting air pollution using neural networks: Air pollution monitoring in Bilbao, Environmental Modelling & Software, vol.23, issue.5, pp.622-637, 2007.
DOI : 10.1016/j.envsoft.2007.09.003

A. Coman, A. Ionescu, and Y. Candau, Hourly ozone prediction for a 24-h horizon using neural networks, Environmental Modelling & Software, vol.23, issue.12, pp.1407-1421, 2008.
DOI : 10.1016/j.envsoft.2008.04.004

L. Hrust, Z. Klai2, J. Kri?an, O. Antoni2, and P. Hercog, Neural network forecasting of air pollutants hourly concentrations using optimised temporal averages of meteorological variables and pollutant concentrations, Atmospheric Environment, vol.43, issue.35, pp.5588-5596, 2009.
DOI : 10.1016/j.atmosenv.2009.07.048

C. Paoli, G. Notton, M. Nivet, M. Padovani, and J. Savelli, A Neural Network model forecasting for prediction of hourly ozone concentration in Corsica, 2011 10th International Conference on Environment and Electrical Engineering, 2011.
DOI : 10.1109/EEEIC.2011.5874661

URL : https://hal.archives-ouvertes.fr/hal-00726860

J. Hooyberghs, C. Mensink, G. Dumont, F. Fierens, and O. Brasseur, A neural network forecast for daily average PM concentrations in Belgium, Atmospheric Environment, vol.39, issue.18, pp.3279-3289, 2005.
DOI : 10.1016/j.atmosenv.2005.01.050

R. Little, Regression With Missing X's: A Review, Journal of the American Statistical Association, vol.87, issue.420, pp.1227-1237, 1992.
DOI : 10.2307/2290664

C. Willmott, Some Comments on the Evaluation of Model Performance, Bulletin of the American Meteorological Society, vol.63, issue.11, pp.1309-1313, 1982.
DOI : 10.1175/1520-0477(1982)063<1309:SCOTEO>2.0.CO;2