D. Barthlmy and Y. Caraglio, Plant Architecture: A Dynamic, Multilevel and Comprehensive Approach to Plant Form, Structure and Ontogeny, Annals of Botany, vol.99, issue.3, pp.375-407, 2007.
DOI : 10.1093/aob/mcl260

T. Sakamoto and M. Matsuoka, Generating high-yielding varieties by genetic manipulation of plant architecture, Current Opinion in Biotechnology, vol.15, issue.2, pp.144-147, 2004.
DOI : 10.1016/j.copbio.2004.02.003

K. J. Niklas, Plant allometry: The scaling of form and process, 1994.

R. W. Pearcy, H. Muraoka, and F. Valladares, Crown architecture in sun and shade environments: assessing function and trade-offs with a three-dimensional simulation model, New Phytologist, vol.24, issue.3, pp.791-800, 2005.
DOI : 10.1111/j.1469-8137.2005.01328.x

C. A. , D. Milbourne, L. Ramsay, R. Meyer, C. Chatot-balandras et al., Qtl for field resistance to late blight in potato are strongly correlated with maturity and vigour, Molecular breeding, pp.5-387, 1999.

C. Godin and Y. Caraglio, A Multiscale Model of Plant Topological Structures, Journal of Theoretical Biology, vol.191, issue.1, pp.1-46, 1998.
DOI : 10.1006/jtbi.1997.0561

URL : https://hal.archives-ouvertes.fr/hal-00827484

P. Ferraro and C. Godin, A distance measure between plant architectures, Annals of Forest Science, vol.57, issue.5, pp.445-461, 2000.
DOI : 10.1051/forest:2000134

URL : https://hal.archives-ouvertes.fr/hal-00883353

V. Segura, C. Durel, and E. Costes, Dissecting apple tree architecture into genetic, ontogenetic and environmental effects: QTL mapping, Tree Genetics & Genomes, vol.166, issue.1, pp.165-179, 2009.
DOI : 10.1007/s11295-008-0181-x

C. Godin, E. Costes, and H. Sinoquet, A Method for Describing Plant Architecture which Integrates Topology and Geometry, Annals of Botany, vol.84, issue.3, pp.343-357, 1999.
DOI : 10.1006/anbo.1999.0923

URL : https://hal.archives-ouvertes.fr/hal-00827477

P. Ferraro, C. Godin, and P. Prusinkiewicz, TOWARD A QUANTIFICATION OF SELF-SIMILARITY IN PLANTS, Fractals, vol.13, issue.02, pp.91-109, 2005.
DOI : 10.1142/S0218348X05002805

URL : https://hal.archives-ouvertes.fr/hal-00307402

Y. Gudon, D. Barthlmy, Y. Caraglio, and E. Costes, Pattern Analysis in Branching and Axillary Flowering Sequences, Journal of Theoretical Biology, vol.212, issue.4, pp.481-520, 2001.
DOI : 10.1006/jtbi.2001.2392

E. Costes and Y. Gudon, Modelling Branching Patterns on 1-year-old Trunks of Six Apple Cultivars, Annals of Botany, vol.89, issue.5, pp.513-524, 2002.
DOI : 10.1093/aob/mcf078

URL : https://hal.archives-ouvertes.fr/hal-00827468

M. Renton, Y. Gudon, C. Godin, and E. Costes, Similarities and gradients in growth unit branching patterns during ontogeny in 'Fuji' apple trees: a stochastic approach, Journal of Experimental Botany, vol.57, issue.12, pp.3131-3143, 2006.
DOI : 10.1093/jxb/erl075

URL : https://hal.archives-ouvertes.fr/hal-00120198

V. Segura, C. Cilas, F. Laurens, and E. Costes, Phenotyping progenies for complex architectural traits: a strategy for 1-year-old apple trees (Malus x domestica Borkh.), Tree Genetics and Genomes, pp.140-151, 2006.
DOI : 10.1007/s11295-006-0037-1

URL : https://hal.archives-ouvertes.fr/hal-00830066

N. Upadyayula, J. Wassom, M. Bohn, and T. Rocheford, Quantitative trait loci analysis of phenotypic traits and principal components of maize tassel inflorescence architecture, Theoretical and Applied Genetics, vol.136, issue.Pt 1, pp.1395-1407, 2006.
DOI : 10.1007/s00122-006-0359-2

K. Onishi, Y. Horiuchi, N. Ishigoh-oka, K. Takagi, N. Ichikawa et al., A QTL Cluster for Plant Architecture and Its Ecological Significance in Asian Wild Rice, Breeding Science, vol.57, issue.1, pp.7-16, 2007.
DOI : 10.1270/jsbbs.57.7

X. Song and T. Zhang, Quantitative trait loci controlling plant architectural traits in cotton, Plant Science, vol.177, issue.4, pp.317-323, 2009.
DOI : 10.1016/j.plantsci.2009.05.015

K. Kawamura, L. H. Oyant, L. Crespel, T. Thouroude, D. Lalanne et al., Quantitative trait loci for flowering time and inflorescence architecture in rose, Theoretical and Applied Genetics, vol.131, issue.4, pp.661-675, 2011.
DOI : 10.1007/s00122-010-1476-5

URL : https://hal.archives-ouvertes.fr/hal-00729329

F. Zhang, J. Jiang, S. Chen, F. Chen, and W. , Mapping single-locus and epistatic quantitative trait loci for plant architectural traits in chrysanthemum, Molecular Breeding, vol.42, issue.6, pp.1027-1036, 2012.
DOI : 10.1007/s11032-011-9686-3

E. Lander and D. Botstein, Mapping mendelian factors underlying quantitative traits using rflp linkage maps, Genetics, vol.121, pp.185-199, 1989.

C. Haley and S. Knott, A simple regression method for mapping quantitative trait loci in line crosses using flanking markers, Heredity, vol.69, issue.4, pp.315-324, 1992.
DOI : 10.1038/hdy.1992.131

C. Jiang and Z. Zeng, Multiple trait analysis of genetic mapping for quantitative trait loci, Genetics, vol.140, pp.1111-1127, 1995.

C. Hackett, R. Meyer, and W. Thomas, Multi-trait QTL mapping in barley using multivariate regression, Genetical Research, vol.77, issue.1, pp.95-106, 2001.
DOI : 10.1017/S0016672300004869

J. Weller, G. Wiggans, P. Vanraden, and M. Ron, Application of a canonical transformation to detection of quantitative trait loci with the aid of genetic markers in a multi-trait experiment, Theoretical and Applied Genetics, vol.92, issue.8, pp.998-1002, 1996.
DOI : 10.1007/BF00224040

H. Gibert and P. Leroy, Comparison of three multitrait methods for QTL detection, Genetics Selection Evolution, vol.35, issue.3, pp.281-304, 2003.
DOI : 10.1186/1297-9686-35-3-281

K. Mardia, J. Kent, and J. Bibby, Discriminant analysis, Multivariate Analysis, pp.300-332, 1979.

X. Zhou, C. Chen, Z. Li, and X. Zhou, Using Chou's amphiphilic pseudo-amino acid composition and support vector machine for prediction of enzyme subfamily classes, Journal of Theoretical Biology, vol.248, issue.3, pp.546-551, 2007.
DOI : 10.1016/j.jtbi.2007.06.001

B. Scholkopf, K. Tsuda, and J. Vert, Kernel methods for computational biology, MIT, 2007.

B. Boser, I. Guyon, and V. Vapnik, A training algorithm for optimal margin classifiers, Proceedings of the fifth annual workshop on Computational learning theory , COLT '92, pp.144-152
DOI : 10.1145/130385.130401

B. Schölkopf and A. Smola, Learning with Kernels, 2002.

D. F. Weberling, Morphology of flowers and inflorescences, 1992.

N. Cristianini and J. Shawe-taylor, An introduction to Support Vector Machines and other kernel based learning methods, 2000.
DOI : 10.1017/CBO9780511801389

V. Vapnik, Statistical Learning Theory, 1998.

J. W. Ooijen, MAPQTL 5.0 software for the mapping of quantitative trait loci in experimental populations, 2004.

G. Churchill and R. Doerge, Empirical threshold values for quantitative trait mapping, Genetics, vol.138, pp.963-971, 1994.

R. Jansen and P. Stam, High resolution of quantitative traits into multiple loci via interval mapping, Genetics, vol.136, pp.1447-1455, 1994.

H. Iwata, A. Gaston, A. Remay, T. Thouroude, J. Jeauffre et al., The TFL1 homologue KSN is a regulator of continuous flowering in rose and strawberry, The Plant Journal, vol.22, issue.5673, pp.69-116, 2012.
DOI : 10.1111/j.1365-313X.2011.04776.x

URL : https://hal.archives-ouvertes.fr/hal-01209893

P. Morel, G. Galopin, and N. Dons, Using architectural analysis to compare the shape of two hybrid tea rose genotypes, Scientia Horticulturae, vol.120, issue.3, pp.391-398, 2009.
DOI : 10.1016/j.scienta.2008.11.039

URL : https://hal.archives-ouvertes.fr/hal-00730104

P. Prusinkiewicz, Y. Erasmus, B. Lane, L. D. Harder, and E. Coen, Evolution and Development of Inflorescence Architectures, Science, vol.316, issue.5830, pp.1452-1456, 2007.
DOI : 10.1126/science.1140429

D. Bradley, O. Ratcliffe, C. Vincent, R. Carpenter, and E. Coen, Inflorescence Commitment and Architecture in Arabidopsis, Science, vol.275, issue.5296, pp.80-83, 1997.
DOI : 10.1126/science.275.5296.80

R. C. Mcgarry and B. G. Ayre, Manipulating plant architecture with members of the cets gene family, Plant Sci, pp.188-189, 2012.