D. G. Cahill, W. K. Ford, K. E. Goodson, G. D. Mahan, A. Majumdar et al., Nanoscale thermal transport, Journal of Applied Physics, vol.93, issue.2, p.793, 2003.
DOI : 10.1063/1.1524305

G. Pernot, Precise control of thermal conductivity at the nanoscale through individual phonon-scattering barriers, Nature Materials, vol.103, issue.6, p.491, 2010.
DOI : 10.1038/nmat2752

URL : https://hal.archives-ouvertes.fr/hal-00505811

A. I. Hochbaum, R. K. Chen, R. D. Delgado, W. J. Liang, E. C. Garnett et al., Enhanced thermoelectric performance of rough silicon nanowires, Nature, vol.3, issue.7175, p.163, 2008.
DOI : 10.1038/nature06381

I. Duchemin and D. Donadio, Atomistic calculation of the thermal conductance of large scale bulk-nanowire junctions, Physical Review B, vol.84, issue.11, p.115423, 2011.
DOI : 10.1103/PhysRevB.84.115423

J. S. Heron, C. Bera, T. Fournier, N. Mingo, and O. Bourgeois, Blocking phonons via nanoscale geometrical design, Physical Review B, vol.82, issue.15, p.155458, 2010.
DOI : 10.1103/PhysRevB.82.155458

URL : https://hal.archives-ouvertes.fr/hal-00725971

A. J. Minnich, J. Johnson, A. J. Schmidt, K. Esfarjani, M. S. Dresselhaus et al., Thermal Conductivity Spectroscopy Technique to Measure Phonon Mean Free Paths, Physical Review Letters, vol.107, issue.9, p.95901, 2011.
DOI : 10.1103/PhysRevLett.107.095901

J. Cuffe, O. Ristow, E. Chavez, A. Shchepetov, P. Chapuis et al., Lifetimes of Confined Acoustic Phonons in Ultrathin Silicon Membranes, Physical Review Letters, vol.110, issue.9, p.95503, 2013.
DOI : 10.1103/PhysRevLett.110.095503

URL : https://hal.archives-ouvertes.fr/hal-00732483

N. Mingo, Calculation of Si nanowire thermal conductivity using complete phonon dispersion relations, Physical Review B, vol.68, issue.11, p.113308, 2003.
DOI : 10.1103/PhysRevB.68.113308

Y. Chalopin, J. Gillet, and S. Volz, Predominance of thermal contact resistance in a silicon nanowire on a planar substrate, Physical Review B, vol.77, issue.23, p.233309, 2008.
DOI : 10.1103/PhysRevB.77.233309

J. Carrete, L. J. Gallego, L. M. Varela, and N. Mingo, Surface roughness and thermal conductivity of semiconductor nanowires: Going below the Casimir limit, Physical Review B, vol.84, issue.7, p.75403, 2011.
DOI : 10.1103/PhysRevB.84.075403

Z. Wang and N. Mingo, Absence of Casimir regime in two-dimensional nanoribbon phonon conduction, Applied Physics Letters, vol.99, issue.10, p.101903, 2011.
DOI : 10.1063/1.3635394

J. Lim, K. Hippalgaonkar, S. C. Andrews, A. Majumdar, and P. Yang, Quantifying Surface Roughness Effects on Phonon Transport in Silicon Nanowires, Nano Letters, vol.12, issue.5, p.2475, 2012.
DOI : 10.1021/nl3005868

L. Shi, D. Y. Li, C. H. Yu, W. Y. Jang, D. Kim et al., Measuring Thermal and Thermoelectric Properties of One-Dimensional Nanostructures Using a Microfabricated Device, Journal of Heat Transfer, vol.125, issue.5, p.881, 2003.
DOI : 10.1115/1.1597619

O. Bourgeois, S. E. Skipetrov, F. Ong, and J. Chaussy, Attojoule Calorimetry of Mesoscopic Superconducting Loops, Physical Review Letters, vol.94, issue.5, p.57007, 2005.
DOI : 10.1103/PhysRevLett.94.057007

URL : https://hal.archives-ouvertes.fr/hal-00372963

S. Sadat, Y. J. Chua, W. Lee, Y. Ganjeh, K. Kurabayashi et al., Room temperature picowatt-resolution calorimetry, Applied Physics Letters, vol.99, issue.4, p.43106, 2011.
DOI : 10.1063/1.3617473

M. C. Wingert, Z. C. Chen, S. Kwon, J. Xiang, and R. K. Chen, Ultra-sensitive thermal conductance measurement of one-dimensional nanostructures enhanced by differential bridge, Review of Scientific Instruments, vol.83, issue.2, p.24901, 2012.
DOI : 10.1063/1.3681255

A. Sikora, H. Ftouni, J. Richard, C. Hébert, D. Eon et al., Highly sensitive thermal conductivity measurements of suspended membranes (SiN and diamond) using a 3??-V??lklein method, Review of Scientific Instruments, vol.83, issue.5, p.54902, 2012.
DOI : 10.1063/1.4704086

]. W. Holmes, J. M. Gildemeister, P. L. Richards, and V. Kotsubo, Measurements of thermal transport in low stress silicon nitride films, Applied Physics Letters, vol.72, issue.18, p.2250, 1998.
DOI : 10.1063/1.121269

W. Fon, K. C. Schwab, J. M. Worlock, and M. L. Roukes, Phonon scattering mechanisms in suspended nanostructures from 4 to 40 K, Physical Review B, vol.66, issue.4, p.45302, 2002.
DOI : 10.1103/PhysRevB.66.045302

R. Chen, Thermal Conductance of Thin Silicon Nanowires, Physical Review Letters, vol.101, issue.10, p.105501, 2008.
DOI : 10.1103/PhysRevLett.101.105501

P. Martin, Z. Aksamija, E. Pop, and U. Ravaioli, Impact of Phonon-Surface Roughness Scattering on Thermal Conductivity of Thin Si Nanowires, Physical Review Letters, vol.102, issue.12, p.125503, 2009.
DOI : 10.1103/PhysRevLett.102.125503

L. Liu and X. Chen, Effect of surface roughness on thermal conductivity of silicon nanowires, Journal of Applied Physics, vol.107, issue.3, p.33501, 2010.
DOI : 10.1063/1.3298457

A. L. Moore, S. K. Saha, R. S. Prasher, and L. Shi, Phonon backscattering and thermal conductivity suppression in sawtooth nanowires, Applied Physics Letters, vol.93, issue.8, p.83112, 2008.
DOI : 10.1063/1.2970044

A. N. Cleland, D. R. Schmidt, and C. S. Yung, Thermal conductance of nanostructured phononic crystals, Physical Review B, vol.64, issue.17, p.172301, 2001.
DOI : 10.1103/PhysRevB.64.172301

J. Gillet, Y. Chalopin, and S. Volz, Atomic-Scale Three-Dimensional Phononic Crystals With a Very Low Thermal Conductivity to Design Crystalline Thermoelectric Devices, Journal of Heat Transfer, vol.131, issue.4, p.43206, 2009.
DOI : 10.1115/1.3072927

URL : https://hal.archives-ouvertes.fr/hal-00473403

J. K. Yu, M. S. , D. Tham, J. Varghese, and J. R. Heath, Reduction of thermal conductivity in phononic nanomesh structures, Nature Nanotechnology, vol.41, issue.10, p.718, 2010.
DOI : 10.1038/nnano.2010.149

T. Klitsner and R. O. , Phonon scattering at silicon crystal surfaces, Physical Review B, vol.36, issue.12, p.6551, 1987.
DOI : 10.1103/PhysRevB.36.6551

E. P. Pokatilova, D. L. Nikaa, and A. A. Balandin, Phonon spectrum and group velocities in AlN/GaN/AlN and related heterostructures, Superlattices and Microstructures, vol.33, issue.3, p.155, 2003.
DOI : 10.1016/S0749-6036(03)00069-7

D. G. Cahill, Thermal conductivity measurement from 30 to 750 K: the 3?? method, Review of Scientific Instruments, vol.61, issue.2, p.802, 1990.
DOI : 10.1063/1.1141498

L. Lu, W. Yi, and D. L. Zhang, 3?? method for specific heat and thermal conductivity measurements, Review of Scientific Instruments, vol.72, issue.7, p.2996, 2001.
DOI : 10.1063/1.1378340

O. Bourgeois, T. Fournier, and J. Chaussy, Measurement of the thermal conductance of silicon nanowires at low temperature, Journal of Applied Physics, vol.101, issue.1, p.16104, 2007.
DOI : 10.1063/1.2400093

O. Bourgeois, E. André, C. Macovei, and J. Chaussy, Liquid nitrogen to room-temperature thermometry using niobium nitride thin films, Review of Scientific Instruments, vol.77, issue.12, p.126108, 2007.
DOI : 10.1063/1.2403934

URL : https://hal.archives-ouvertes.fr/hal-00132485

?. Hz, With temperature oscillations of 10 mK, this experiment is able to quantify the attoJoule

A. Rajabpour, S. M. Vaez-allaei, Y. Chalopin, F. Kowsary, and S. Volz, Tunable superlattice in-plane thermal conductivity based on asperity sharpness at interfaces: Beyond Ziman???s model of specularity, Journal of Applied Physics, vol.110, issue.11, p.113529, 2011.
DOI : 10.1063/1.3665408

URL : https://hal.archives-ouvertes.fr/hal-01285833

C. Bera, N. Mingo, and S. Volz, Marked Effects of Alloying on the Thermal Conductivity of Nanoporous Materials, Physical Review Letters, vol.104, issue.11, p.115502, 2010.
DOI : 10.1103/PhysRevLett.104.115502

C. Jeong, S. Datta, and M. Lundstrom, Full dispersion versus Debye model evaluation of lattice thermal conductivity with a Landauer approach, Journal of Applied Physics, vol.109, issue.7, p.73718, 2011.
DOI : 10.1063/1.3567111

J. Sadhu and S. Sinha, Room-temperature phonon boundary scattering below the Casimir limit, Physical Review B, vol.84, issue.11, p.115450, 2011.
DOI : 10.1103/PhysRevB.84.115450

Y. P. He and G. Galli, Microscopic Origin of the Reduced Thermal Conductivity of Silicon Nanowires, Physical Review Letters, vol.108, issue.21, p.215901, 2012.
DOI : 10.1103/PhysRevLett.108.215901