Classification of hyperspectral images by tensor modeling and additive morphological decomposition

Abstract : Pixel-wise classification in high-dimensional multivariate images is investigated. The proposed method deals with the joint use of spectral and spatial information provided in hyperspectral images. Additive morphological decomposition (AMD) based on morphological operators is proposed. AMD defines a scale-space decomposition for multivariate images without any loss of information. AMD is modeled as a tensor structure and tensor principal components analysis is compared as dimensional reduction algorithm versus classic approach. Experimental comparison shows that the proposed algorithm can provide better performance for the pixel classification of hyperspectral image than many other well-known techniques.
Type de document :
Article dans une revue
Pattern Recognition, Elsevier, 2013, 46 (2), pp.566-577. <10.1016/j.patcog.2012.08.011>
Liste complète des métadonnées


https://hal-mines-paristech.archives-ouvertes.fr/hal-00751338
Contributeur : Santiago Velasco-Forero <>
Soumis le : mardi 13 novembre 2012 - 14:57:50
Dernière modification le : mardi 12 septembre 2017 - 11:41:39
Document(s) archivé(s) le : samedi 17 décembre 2016 - 09:57:45

Fichier

Additive_Tensor_decomposition....
Fichiers produits par l'(les) auteur(s)

Identifiants

Collections

Citation

Santiago Velasco-Forero, Jesus Angulo. Classification of hyperspectral images by tensor modeling and additive morphological decomposition. Pattern Recognition, Elsevier, 2013, 46 (2), pp.566-577. <10.1016/j.patcog.2012.08.011>. <hal-00751338>

Partager

Métriques

Consultations de
la notice

233

Téléchargements du document

636