Coherent state quantization of paragrassmann algebras

M. El Baz R. Fresneda J.-P. Gazeau 1 Y. Hassouni
1 APC - THEORIE
APC - UMR 7164 - AstroParticule et Cosmologie
Abstract : By using a coherent state quantization of paragrassmann variables, operators are constructed in finite Hilbert spaces. We thus obtain in a straightforward way a matrix representation of the paragrassmann algebra. This algebra of finite matrices realizes a deformed Weyl-Heisenberg algebra. The study of mean values in coherent states of some of these operators leads to interesting conclusions.
Document type :
Journal articles
Journal of Physics A: Mathematical and Theoretical, Institute of Physics: Hybrid Open Access, 2010, 43, pp.385202. <10.1088/1751-8113/43/38/385202>


https://hal.archives-ouvertes.fr/hal-00739322
Contributor : Alina Deniau <>
Submitted on : Sunday, October 7, 2012 - 9:31:04 PM
Last modification on : Thursday, April 23, 2015 - 2:18:08 PM

Identifiers

Collections

Citation

M. El Baz, R. Fresneda, J.-P. Gazeau, Y. Hassouni. Coherent state quantization of paragrassmann algebras. Journal of Physics A: Mathematical and Theoretical, Institute of Physics: Hybrid Open Access, 2010, 43, pp.385202. <10.1088/1751-8113/43/38/385202>. <hal-00739322>

Export

Share

Metrics

Consultation de la notice

237