Zero-Sum Distinguishers for Iterated Permutations and Application to Keccak-f and Hamsi-256

Abstract : The zero-sum distinguishers introduced by Aumasson and Meier are investigated. First, the minimal size of a zero-sum is established. Then, we analyze the impacts of the linear and the nonlinear layers in an iterated permutation on the construction of zero-sum partitions. Finally, these techniques are applied to the Keccak-f permutation and to Hamsi-256. We exhibit several zero-sum partitions for 20 rounds (out of 24) of Keccak-f and some zero-sum partitions of size 2^{19} and 2^{10} for the finalization permutation in Hamsi-256.
Type de document :
Communication dans un congrès
Lecture Notes in Computer Science. Selected Areas in Cryptography - 17th International Workshop, SAC 2010,, Aug 2010, Waterloo, Ontario,, Canada. Springer, 6544, pp.1-17, 2010
Liste complète des métadonnées

https://hal.archives-ouvertes.fr/hal-00738200
Contributeur : Christina Boura <>
Soumis le : mercredi 3 octobre 2012 - 16:36:45
Dernière modification le : vendredi 25 mai 2018 - 12:02:05
Document(s) archivé(s) le : vendredi 4 janvier 2013 - 03:58:47

Fichier

boura_canteaut_sac10.pdf
Fichiers éditeurs autorisés sur une archive ouverte

Identifiants

  • HAL Id : hal-00738200, version 1

Collections

Citation

Christina Boura, Anne Canteaut. Zero-Sum Distinguishers for Iterated Permutations and Application to Keccak-f and Hamsi-256. Lecture Notes in Computer Science. Selected Areas in Cryptography - 17th International Workshop, SAC 2010,, Aug 2010, Waterloo, Ontario,, Canada. Springer, 6544, pp.1-17, 2010. 〈hal-00738200〉

Partager

Métriques

Consultations de la notice

204

Téléchargements de fichiers

248