Impact of Non-local Means filtering on Brain Tissue Segmentation

Abstract : A wide number of magnetic resonance imaging (MRI) analysis techniques rely on brain tissue segmentation. Automated and reliable tissue classification is a challenging task as the intensity of the data typically does not allow a clear delimitation of the different tissue types because of partial volume effects, image noise and intensity non-uniformities caused by magnetic field inhomogeneities. To solve this problem, classification algorithms traditionally combine data-term (e.g. gray-level intensity or gradient values) with prior spatial information (e.g. local neighborhood and/or atlas information). To be robust to noise, local interactions between voxels are usually taken into account by using Markov random field (MRF) models. In this work, we propose to study the impact of Nonlocal (NL) means denoising (Coupe et al. 2008) on brain tissue segmentation.
Type de document :
Communication dans un congrès
Organization for Human Brain Mapping 2010 Annual Meeting, Jun 2010, United States
Liste complète des métadonnées

Littérature citée [7 références]  Voir  Masquer  Télécharger

https://hal.archives-ouvertes.fr/hal-00645484
Contributeur : Pierrick Coupé <>
Soumis le : lundi 28 novembre 2011 - 10:49:48
Dernière modification le : vendredi 9 février 2018 - 19:00:03
Document(s) archivé(s) le : vendredi 16 novembre 2012 - 12:11:15

Fichier

Gaser_OHBM2010.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

  • HAL Id : hal-00645484, version 1

Citation

Christian Gaser, Pierrick Coupé. Impact of Non-local Means filtering on Brain Tissue Segmentation. Organization for Human Brain Mapping 2010 Annual Meeting, Jun 2010, United States. 〈hal-00645484〉

Partager

Métriques

Consultations de la notice

223

Téléchargements de fichiers

135