Decomposition of terminology graphs for domain knowledge acquisition.

Abstract : We propose a graph decomposition algorithm for analyzing the structure of complex graph networks. After multi-word term extraction, we apply techniques from text mining and visual analytics in a novel way by integrating symbolic and numeric information to build clusters of domain topics. Terms are clustered based on surface linguistic variations and clusters are inserted in an association network based on their intersection with documents. The graph is then decomposed based on atom graph structure into central (non-decomposable) atom and peripheral atoms. The whole process is applied to publications from the Sloan Digital Sky Survey (SDSS) project in the Astronomy field. The mapping obtained was evaluated by a domain expert and appeared to have captured interesting conceptual relations between different domain topics.
Type de document :
Communication dans un congrès
Shanahan, James G. et al. 17th ACM conference on Information and knowledge management (CIKM '08), Oct 2008, Napa Valley, California, United States. Association for Computing Machinery (ACM)., pp.1463-1464, 2008, <10.1145/1458082.1458334>


https://hal.archives-ouvertes.fr/hal-00636039
Contributeur : Fidelia Ibekwe-Sanjuan <>
Soumis le : mercredi 26 octobre 2011 - 15:24:55
Dernière modification le : mercredi 23 mars 2016 - 09:48:48
Document(s) archivé(s) le : vendredi 27 janvier 2012 - 02:33:54

Fichier

cikm630-ibekwesanjuan.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

Collections

Citation

Fidelia Ibekwe-Sanjuan, Eric Sanjuan, Michael Vogeley. Decomposition of terminology graphs for domain knowledge acquisition.. Shanahan, James G. et al. 17th ACM conference on Information and knowledge management (CIKM '08), Oct 2008, Napa Valley, California, United States. Association for Computing Machinery (ACM)., pp.1463-1464, 2008, <10.1145/1458082.1458334>. <hal-00636039>

Exporter

Partager

Métriques

Consultations de
la notice

229

Téléchargements du document

158