K. ?. , L. ?. , and H. }. Now, Observe that there exist O(n2 k ) values of the form P, order to compute value P [v, K ? ], we have to check at most O(nk) other values P [u, K ?? ]. Hence the time complexity is O(n 2 k2 k )

{. H. {1-f, F. }. , and H. }. , Consider two different perfect families of hash functions: a family H from M to , k H }, as we have previously introduced in this section, and a family F from the set V to By the property of the family of perfect hash functions, we know that there is a function f ? F such that the vertices of G that belong to a solution of size k are associated to distinct labels of , k F }. Similarly, we know that there is a function h ? H such that the occurrences of colors of M that belong to an optimal solution, are associated to different labels of Observe that each family of perfect hash functions consists of O(log n) 2 O(k) functions. Hence, we can combine all the possible pairs (f, h) of functions, with f ? F and h ? H, in O(log 2 n) 4 O(k) time. Recall that, for each color c i ? M, S H (c i ) denotes the set of labels associated to occurrences of color c i by function h, and that, given that v is colored c i , S H (v) = S(c i ). Now, for each v ? V and for each subset, define M L (v) as the family of all sets of labels H ? ? {1 H , . . . , k H } such that there exists an occurrence V ? , with v ? V ? , where the set of labels in {1 F , . . . , k F } that f assigns to V ? is exactly L and such that C(S H , V ? , H ? ) is feasible. Now, we present a method called the Batch procedure for computing M L (v), similar to that introduced in [8, 12]. Assume that we have computed the family of sets M L ? (v), with L ? ? L \ f (v), we apply the following procedure. Batch Procedure(L, v)

]. N. Alon, R. Yuster, and U. Zwick, Color-coding, Journal of the ACM, vol.42, issue.4, pp.844-856, 1995.
DOI : 10.1145/210332.210337

N. Betzler, M. R. Fellows, C. Komusiewicz, and R. Niedermeier, Parameterized Algorithms and Hardness Results for Some Graph Motif Problems, Proc. 19th Annual Symposium on Combinatorial Pattern Matching (CPM), pp.31-43, 2008.
DOI : 10.1007/978-3-540-69068-9_6

A. Björklund, T. Husfeldt, P. Kaski, and M. Koivisto, Fourier meets möbius: fast subset convolution, Proceedings of the thirty-ninth annual ACM symposium on Theory of computing, pp.67-74, 2007.

P. Bonsma, Complexity results on restricted instances of a paint shop problem for words, Discrete Applied Mathematics, vol.154, issue.9, 2003.
DOI : 10.1016/j.dam.2005.05.033

P. Bonsma, . Th, W. Epping, and . Hochstättler, Complexity results on restricted instances of a paint shop problem for words, Discrete Applied Mathematics, vol.154, issue.9, pp.1335-1343, 2006.
DOI : 10.1016/j.dam.2005.05.033

S. Bruckner, F. Hüffner, R. M. Karp, R. Shamir, and R. Sharan, Topologyfree querying of protein interaction networks, Proc. 13th Annual International Conference on Computational Molecular Biology (RECOMB), p.74, 2009.

T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein, Introduction to algorithms, 1992.

R. Dondi, G. Fertin, and S. Vialette, WEAK PATTERN MATCHING IN COLORED GRAPHS: MINIMIZING THE NUMBER OF CONNECTED COMPONENTS, Theoretical Computer Science, pp.27-38, 2007.
DOI : 10.1142/9789812770998_0007

URL : https://hal.archives-ouvertes.fr/hal-00417910

W. Hochstättler, T. Epping, and P. Oertel, Complexity results on a paint shop problem, Discrete Applied Mathematics, vol.136, issue.2-3, pp.217-226, 2004.

M. Fellows, G. Fertin, D. Hermelin, and S. Vialette, Sharp Tractability Borderlines for Finding Connected Motifs in Vertex-Colored Graphs, Proc. 34th International Colloquium on Automata, Languages and Programming (ICALP), pp.340-351, 2007.
DOI : 10.1007/978-3-540-73420-8_31

URL : https://hal.archives-ouvertes.fr/hal-00417928

M. R. Fellows, M. T. Hallett, and U. Stege, Analogs & duals of the MAST problem for sequences & trees, Journal of Algorithms, vol.49, issue.1, pp.192-216, 2003.
DOI : 10.1016/S0196-6774(03)00081-6

A. J. Goldman, Optimal Center Location in Simple Networks, Transportation Science, vol.5, issue.2, pp.212-221, 1971.
DOI : 10.1287/trsc.5.2.212

S. Guillemot, Parameterized Complexity and Approximability of the SLCS Problem, Proc. 3rd International Workshop on Parameterized and Exact Computation (IWPEC), pp.115-128, 2008.
DOI : 10.1007/978-3-540-79723-4_12

URL : https://hal.archives-ouvertes.fr/hal-00824929

J. Hein, T. Jiang, L. Wang, and K. Zhang, On the complexity of comparing evolutionary trees, Discrete Applied Mathematics, vol.71, issue.1-3, pp.153-169, 1996.
DOI : 10.1016/S0166-218X(96)00062-5

F. Hüffner, S. Wernicke, and T. Zichner, Algorithm Engineering for Color-Coding with Applications to Signaling Pathway Detection, Algorithmica, vol.70, issue.4, pp.114-132, 2008.
DOI : 10.1007/s00453-007-9008-7

T. Jiang and M. Li, On the Approximation of Shortest Common Supersequences and Longest Common Subsequences, SIAM Journal on Computing, vol.24, issue.5, pp.1122-1139, 1995.
DOI : 10.1137/S009753979223842X

D. Karger, R. Motwani, and G. D. Ramkumar, On approximating the longest path in a graph, SIAM Journal on Computing, vol.24, pp.1122-1139, 1995.

B. P. Kelley, R. Sharan, R. M. Karp, T. Sittler, D. E. Root et al., Conserved pathways within bacteria and yeast as revealed by global protein network alignment, Proceedings of the National Academy of Sciences, vol.100, issue.20, pp.11394-11399, 2003.
DOI : 10.1073/pnas.1534710100

M. Koyutürk, A. Grama, and W. Szpankowski, Pairwise Local Alignment of Protein Interaction Networks Guided by Models of Evolution, Proc. 9th Annual International Conference on Research in Computational Molecular Biology (RECOMB), pp.48-65, 2005.
DOI : 10.1007/11415770_4

V. Lacroix, C. G. Fernandes, and M. Sagot, Motif Search in Graphs: Application to Metabolic Networks, IEEE/ACM Transactions on Computational Biology and Bioinformatics, vol.3, issue.4, pp.360-368, 2006.
DOI : 10.1109/TCBB.2006.55

URL : https://hal.archives-ouvertes.fr/hal-00427984

N. Megiddo, A. Tamir, E. Zemel, and R. Chandrasekaran, An o(n log 2 n) algorithm for the k-th longest path in a tree with applications to location problems, pp.328-337, 1981.

R. Niedermeier, Invitation to fixed parameter algorithms, Lecture Series in Mathematics and Its Applications, 2006.

A. Paz and S. Moran, Non deterministic polynomial optimization problems and their approximations, Theoretical Computer Science, vol.15, issue.3, pp.251-277, 1981.
DOI : 10.1016/0304-3975(81)90081-5

URL : http://doi.org/10.1016/0304-3975(81)90081-5

R. Raz and S. Safra, A sub-constant error-probability low-degree test, and a sub-constant error-probability PCP characterization of NP, Proceedings of the twenty-ninth annual ACM symposium on Theory of computing , STOC '97, pp.475-484, 1997.
DOI : 10.1145/258533.258641

J. Scott, T. Ideker, R. M. Karp, and R. Sharan, Efficient Algorithms for Detecting Signaling Pathways in Protein Interaction Networks, Journal of Computational Biology, vol.13, issue.2, pp.133-144, 2006.
DOI : 10.1089/cmb.2006.13.133

R. Sharan, T. Ideker, B. Kelley, R. Shamir, and R. M. Karp, Identification of protein complexes by comparative analysis of yeast and bacterial protein interaction data, Proc. 8th annual international conference on Computational molecular biology (RECOMB), pp.282-289, 2004.

R. Sharan, S. Suthram, R. M. Kelley, T. Kuhn, S. Mccuine et al., Conserved patterns of protein interaction in multiple species, Proc. Natl Acad. Sci. USA, 1974.
DOI : 10.1073/pnas.0409522102