B. Rost, J. Liu, R. Nair, K. Wrzeszczynski, and Y. Ofran, Automatic prediction of protein function, Cell Mol Life Sci, vol.60, issue.12, pp.2637-2650, 2003.

A. Nagy, H. Hegyi, K. Farkas, H. Tordai, E. Kozma et al., Identification and correction of abnormal, incomplete and mispredicted proteins in public databases, BMC Bioinformatics, vol.9, issue.1, p.353, 2008.
DOI : 10.1186/1471-2105-9-353

M. Desvaux, M. Hebraud, R. Talon, and I. Henderson, Secretion and subcellular localizations of bacterial proteins: a semantic awareness issue, Trends in Microbiology, vol.17, issue.4, pp.139-145, 2009.
DOI : 10.1016/j.tim.2009.01.004

C. De-la-pena, Z. Lei, B. Watson, L. Sumner, and J. Vivanco, Root-microbe communication through protein secretion. The Journal of biological chemistry, pp.25247-25255, 2008.

O. Steward, A. Pollack, and A. Rao, Evidence that protein constituents of postsynaptic membrane specializations are locally synthesized: Time course of appearance of recently synthesized proteins in synaptic junctions, Journal of Neuroscience Research, vol.101, issue.4, pp.649-660, 1991.
DOI : 10.1002/jnr.490300408

D. Russo, A. Williams, A. Edwards, D. Posadas, C. Finnie et al., Proteins Exported via the PrsD-PrsE Type I Secretion System and the Acidic Exopolysaccharide Are Involved in Biofilm Formation by Rhizobium leguminosarum, Journal of Bacteriology, vol.188, issue.12, pp.1884474-4486, 2006.
DOI : 10.1128/JB.00246-06

L. Zhang, Z. Zhu, H. Jing, J. Zhang, Y. Xiong et al., Pleiotropic effects of the twin-arginine translocation system on biofilm formation, colonization, and virulence in Vibrio cholerae, BMC Microbiology, vol.9, issue.1, p.114, 2009.
DOI : 10.1186/1471-2180-9-114

D. Buck, E. , A. J. Lammertyn, and E. , The role of protein secretion systems in the virulence of the intracellular pathogen Legionella pneumophila, Microbiology, vol.153, issue.12, pp.3948-3953, 2007.
DOI : 10.1099/mic.0.2007/012039-0

M. Poueymiro and S. Genin, Secreted proteins from Ralstonia solanacearum: a hundred tricks to kill a plant, Current Opinion in Microbiology, vol.12, issue.1, pp.44-52, 2009.
DOI : 10.1016/j.mib.2008.11.008

R. Shrivastava and J. Miller, Virulence factor secretion and translocation by Bordetella species. Current opinion in microbiology, pp.88-93, 2009.

P. Natale, T. Bruser, and A. Driessen, Sec- and Tat-mediated protein secretion across the bacterial cytoplasmic membrane???Distinct translocases and mechanisms, Biochimica et Biophysica Acta (BBA) - Biomembranes, vol.1778, issue.9, pp.17781735-1756, 2008.
DOI : 10.1016/j.bbamem.2007.07.015

E. Papanikou, S. Karamanou, and A. Economou, Bacterial protein secretion through the translocase nanomachine, Nature Reviews Microbiology, vol.363, issue.11, pp.839-851, 2007.
DOI : 10.1038/nrmicro1771

M. Muller, Twin-arginine-specific protein export in Escherichia coli, Research in microbiology 2005, pp.131-136
DOI : 10.1016/j.resmic.2004.09.016

P. Lee, D. Tullman-ercek, and G. Georgiou, The bacterial twin-arginine translocation pathway. Annual review of microbiology, pp.373-395, 2006.

S. Albers, Z. Szabo, and A. Driessen, Protein secretion in the Archaea: multiple paths towards a unique cell surface, Nature Reviews Microbiology, vol.438, issue.7, pp.537-547, 2006.
DOI : 10.1038/nrmicro1440

M. Desvaux, N. Parham, A. Scott-tucker, and I. Henderson, The general secretory pathway: a general misnomer? Trends in microbiology, pp.306-309, 2004.

I. Holland, L. Schmitt, and J. Young, Type 1 protein secretion in bacteria, the ABC-transporter dependent pathway (review) Molecular membrane biology, pp.29-39, 2005.

J. Galan and H. Wolf-watz, Protein delivery into eukaryotic cells by type III secretion machines, Nature, vol.281, issue.7119, pp.567-573, 2006.
DOI : 10.1038/nature05272

P. Ghosh, Process of Protein Transport by the Type III Secretion System, Microbiology and Molecular Biology Reviews, vol.68, issue.4, pp.771-795, 2004.
DOI : 10.1128/MMBR.68.4.771-795.2004

D. Medini, A. Covacci, and C. Donati, Protein Homology Network Families Reveal Step-Wise Diversification of Type III and Type IV Secretion Systems, PLoS Computational Biology, vol.340, issue.12, p.173, 2006.
DOI : 10.1371/journal.pcbi.0020173.st005

S. Pukatzki, S. Mcauley, and S. Miyata, The type VI secretion system: translocation of effectors and effector-domains. Current opinion in microbiology, pp.11-17, 2009.

A. Filloux, A. Hachani, and S. Bleves, The bacterial type VI secretion machine: yet another player for protein transport across membranes, Microbiology, vol.154, issue.6, pp.1570-1583, 2008.
DOI : 10.1099/mic.0.2008/016840-0

M. Desvaux, M. Hebraud, I. Henderson, and M. Pallen, Type III secretion: what's in a name? Trends in microbiology, pp.157-160, 2006.

S. Coulthurst and T. Palmer, A new way out: protein localization on the bacterial cell surface via Tat and a novel Type II secretion system, Molecular Microbiology, vol.4, issue.6, pp.1331-1335, 2008.
DOI : 10.1111/j.1365-2958.2008.06367.x

N. Cianciotto, Type II secretion: a protein secretion system for all seasons, Trends in Microbiology, vol.13, issue.12, pp.581-588, 2005.
DOI : 10.1016/j.tim.2005.09.005

C. Mueller, P. Broz, and G. Cornelis, The type III secretion system tip complex and translocon. Molecular microbiology, pp.1085-1095, 2008.

I. Henderson, F. Navarro-garcia, M. Desvaux, and R. Fernandez, Type V Protein Secretion Pathway: the Autotransporter Story, Microbiology and Molecular Biology Reviews, vol.68, issue.4, pp.692-744, 2004.
DOI : 10.1128/MMBR.68.4.692-744.2004

M. Desvaux, N. Parham, and I. Henderson, Type V protein secretion: simplicity gone awry? Current issues in molecular biology, pp.111-124, 2004.

S. Nuccio and A. Baumler, Evolution of the Chaperone/Usher Assembly Pathway: Fimbrial Classification Goes Greek, Microbiology and Molecular Biology Reviews, vol.71, issue.4, pp.551-575, 2007.
DOI : 10.1128/MMBR.00014-07

F. Sauer, H. Remaut, S. Hultgren, and G. Waksman, Fiber assembly by the chaperone???usher pathway, Biochimica et Biophysica Acta (BBA) - Molecular Cell Research, vol.1694, issue.1-3, pp.259-267, 2004.
DOI : 10.1016/j.bbamcr.2004.02.010

M. Kostakioti, C. Newman, D. Thanassi, and C. Stathopoulos, Mechanisms of Protein Export across the Bacterial Outer Membrane, Journal of Bacteriology, vol.187, issue.13, pp.4306-4314, 2005.
DOI : 10.1128/JB.187.13.4306-4314.2005

W. Bitter, E. Houben, J. Luirink, and B. Appelmelk, Type VII secretion in mycobacteria: classification in line with cell envelope structure, Trends in Microbiology, vol.17, issue.8, pp.337-338, 2009.
DOI : 10.1016/j.tim.2009.05.007

M. Desvaux, A. Khan, A. Scott-tucker, R. Chaudhuri, M. Pallen et al., Genomic analysis of the protein secretion systems in Clostridium acetobutylicum ATCC 824, Biochimica et Biophysica Acta (BBA) - Molecular Cell Research, vol.1745, issue.2, pp.1745223-253, 2005.
DOI : 10.1016/j.bbamcr.2005.04.006

C. Peabody, Y. Chung, M. Yen, D. Vidal-ingigliardi, A. Pugsley et al., Type II protein secretion and its relationship to bacterial type IV pili and archaeal flagella, Microbiology, vol.149, issue.11, pp.1493051-3072, 2003.
DOI : 10.1099/mic.0.26364-0

P. Aldridge and K. Hughes, How and when are substrates selected for type III secretion? Trends in microbiology, pp.209-214, 2001.

M. Pallen, The ESAT-6/WXG100 superfamily ? and a new Gram-positive secretion system? Trends in microbiology, pp.209-212, 2002.

M. Desvaux, M. Hebraud, R. Talon, and I. Henderson, Outer membrane translocation: numerical protein secretion nomenclature in question in mycobacteria, Trends in Microbiology, vol.17, issue.8, pp.338-340, 2009.
DOI : 10.1016/j.tim.2009.05.008

G. Von-heijne, Patterns of amino acids near signal-sequence cleavage sites. European journal of biochemistry/FEBS 1983, pp.17-21

G. Von-heijne, A new method for predicting signal sequence cleavage sites. Nucleic acids research, pp.4683-4690, 1986.

D. Mcgeoch, On the predictive recognition of signal peptide sequences. Virus research, pp.271-286, 1985.

I. Ladunga, F. Czako, I. Csabai, and T. Geszti, Improving signal peptide prediction accuracy by simulated neural network, Bioinformatics, vol.7, issue.4, pp.485-487, 1991.
DOI : 10.1093/bioinformatics/7.4.485

G. Schneider, S. Rohlk, and P. Wrede, Analysis of cleavage-site patterns in protein precursor sequences with a perceptron-type neural network. Biochemical and biophysical research communications, pp.951-959, 1993.

D. Plewczynski, L. Slabinski, K. Ginalski, and L. Rychlewski, Prediction of signal peptides in protein sequences by neural networks, Acta biochimica Polonica, vol.55, issue.2, pp.261-267, 2008.

H. Nielsen and A. Krogh, Prediction of signal peptides and signal anchors by a hidden Markov model, Proceedings/International Conference on Intelligent Systems for Molecular Biology, pp.122-130, 1998.

J. Bendtsen, H. Nielsen, G. Von-heijne, and S. Brunak, Improved Prediction of Signal Peptides: SignalP 3.0, Journal of Molecular Biology, vol.340, issue.4, pp.783-795, 2004.
DOI : 10.1016/j.jmb.2004.05.028

H. Nielsen, J. Engelbrecht, S. Brunak, and G. Von-heijne, Identification of prokaryotic and eukaryotic signal peptides and prediction of their cleavage sites, Protein Engineering Design and Selection, vol.10, issue.1, pp.1-6, 1997.
DOI : 10.1093/protein/10.1.1

L. Kall, A. Krogh, and E. Sonnhammer, A Combined Transmembrane Topology and Signal Peptide Prediction Method, Journal of Molecular Biology, vol.338, issue.5, pp.1027-1036, 2004.
DOI : 10.1016/j.jmb.2004.03.016

L. Kall, A. Krogh, and E. Sonnhammer, Advantages of combined transmembrane topology and signal peptide prediction--the Phobius web server, Nucleic Acids Research, vol.35, issue.Web Server, pp.429-432, 2007.
DOI : 10.1093/nar/gkm256

Z. Zhang and W. Henzel, Signal peptide prediction based on analysis of experimentally verified cleavage sites, Protein Science, vol.19, issue.10, pp.2819-2824, 2004.
DOI : 10.1110/ps.04682504

B. Berks, A common export pathway for proteins binding complex redox cofactors? Molecular microbiology, pp.393-404, 1996.

R. Rose, T. Bruser, J. Kissinger, and M. Pohlschroder, Adaptation of protein secretion to extremely high-salt conditions by extensive use of the twinarginine translocation pathway. Molecular microbiology, pp.943-950, 2002.

J. Bendtsen, H. Nielsen, D. Widdick, T. Palmer, and S. Brunak, Prediction of twinarginine signal peptides, BMC Bioinformatics, vol.6, issue.1, p.167, 2005.
DOI : 10.1186/1471-2105-6-167

G. Von-heijne, The structure of signal peptides from bacterial lipoproteins, "Protein Engineering, Design and Selection", vol.2, issue.7, pp.531-534, 1989.
DOI : 10.1093/protein/2.7.531

K. Sankaran, K. Gan, B. Rash, H. Qi, H. Wu et al., Roles of histidine-103 and tyrosine-235 in the function of the prolipoprotein diacylglyceryl transferase of Escherichia coli., Journal of Bacteriology, vol.179, issue.9, pp.2944-2948, 1997.
DOI : 10.1128/jb.179.9.2944-2948.1997

F. Berven, O. Karlsen, A. Straume, K. Flikka, J. Murrell et al., Analysing the outer membrane subproteome of Methylococcus capsulatus (Bath) using proteomics and novel biocomputing tools, Archives of Microbiology, vol.11, issue.10, pp.362-377, 2006.
DOI : 10.1007/s00203-005-0055-7

M. Babu, M. Priya, A. Selvan, M. Madera, J. Gough et al., A Database of Bacterial Lipoproteins (DOLOP) with Functional Assignments to Predicted Lipoproteins, Journal of Bacteriology, vol.188, issue.8, pp.1882761-2773, 2006.
DOI : 10.1128/JB.188.8.2761-2773.2006

P. Bagos, K. Tsirigos, T. Liakopoulos, and S. Hamodrakas, Prediction of Lipoprotein Signal Peptides in Gram-Positive Bacteria with a Hidden Markov Model, Journal of Proteome Research, vol.7, issue.12, pp.5082-5093, 2008.
DOI : 10.1021/pr800162c

A. Juncker, H. Willenbrock, V. Heijne, G. Brunak, S. Nielsen et al., Prediction of lipoprotein signal peptides in Gram-negative bacteria, Protein Science, vol.53, issue.8, pp.1652-1662, 2003.
DOI : 10.1110/ps.0303703

P. Klein, M. Kanehisa, and C. Delisi, The detection and classification of membrane-spanning proteins, Biochimica et Biophysica Acta (BBA) - Biomembranes, vol.815, issue.3, pp.468-476, 1985.
DOI : 10.1016/0005-2736(85)90375-X

M. Claros and G. Von-heijne, TopPred II: an improved software for membrane protein structure predictions, Bioinformatics, vol.10, issue.6, pp.685-686, 1994.
DOI : 10.1093/bioinformatics/10.6.685

T. Hirokawa, S. Boon-chieng, and S. Mitaku, SOSUI: classification and secondary structure prediction system for membrane proteins, Bioinformatics, vol.14, issue.4, pp.378-379, 1998.
DOI : 10.1093/bioinformatics/14.4.378

S. Jayasinghe, K. Hristova, and S. White, Energetics, stability, and prediction of transmembrane helices11Edited by G. von Heijne, Journal of Molecular Biology, vol.312, issue.5, pp.927-934, 2001.
DOI : 10.1006/jmbi.2001.5008

M. Ganapathiraju, C. Jursa, H. Karimi, and J. Klein-seetharaman, TMpro web server and web service: transmembrane helix prediction through amino acid property analysis, Bioinformatics, vol.23, issue.20, pp.2795-2796, 2007.
DOI : 10.1093/bioinformatics/btm398

C. Deber, C. Wang, L. Liu, A. Prior, S. Agrawal et al., TM Finder: A prediction program for transmembrane protein segments using a combination of hydrophobicity and nonpolar phase helicity scales, Protein Science, vol.10, issue.1, pp.212-219, 2001.
DOI : 10.1110/ps.30301

D. Jones, W. Taylor, and J. Thornton, A Model Recognition Approach to the Prediction of All-Helical Membrane Protein Structure and Topology, Biochemistry, vol.33, issue.10, pp.3038-3049, 1994.
DOI : 10.1021/bi00176a037

B. Persson and P. Argos, Prediction of membrane protein topology utilizing multiple sequence alignments, Journal of Protein Chemistry, vol.16, issue.5, pp.453-457, 1997.
DOI : 10.1023/A:1026353225758

B. Rost, P. Fariselli, and R. Casadio, Topology prediction for helical transmembrane proteins at 86% accuracy-Topology prediction at 86% accuracy, Protein Science, vol.227, issue.8, pp.1704-1718, 1996.
DOI : 10.1002/pro.5560050824

P. Aloy, J. Cedano, B. Oliva, F. Aviles, and E. Querol, ???TransMem???: a neural network implemented in Excel spreadsheets for predicting transmembrane domains of proteins, Bioinformatics, vol.13, issue.3, pp.231-234, 1997.
DOI : 10.1093/bioinformatics/13.3.231

A. Krogh, B. Larsson, G. Von-heijne, and E. Sonnhammer, Predicting transmembrane protein topology with a hidden markov model: application to complete genomes11Edited by F. Cohen, Journal of Molecular Biology, vol.305, issue.3, pp.567-580, 2001.
DOI : 10.1006/jmbi.2000.4315

G. Tusnady and I. Simon, The HMMTOP transmembrane topology prediction server, Bioinformatics, vol.17, issue.9, pp.849-850, 2001.
DOI : 10.1093/bioinformatics/17.9.849

H. Viklund and A. Elofsson, Best ??-helical transmembrane protein topology predictions are achieved using hidden Markov models and evolutionary information, Protein Science, vol.12, issue.7, pp.1908-1917, 2004.
DOI : 10.1110/ps.04625404

Z. Yuan, J. Mattick, and R. Teasdale, SVMtm: Support vector machines to predict transmembrane segments, Journal of Computational Chemistry, vol.312, issue.5, pp.632-636, 2004.
DOI : 10.1002/jcc.10411

A. Garrow, A. Agnew, and D. Westhead, TMB-Hunt: an amino acid composition based method to screen proteomes for beta-barrel transmembrane proteins, BMC Bioinformatics, vol.6, issue.1, p.56, 2005.
DOI : 10.1186/1471-2105-6-56

A. Garrow and D. Westhead, A consensus algorithm to screen genomes for novel families of transmembrane ?? barrel proteins, Proteins: Structure, Function, and Bioinformatics, vol.53, issue.Suppl 6, pp.8-18, 2007.
DOI : 10.1002/prot.21439

P. Bagos, T. Liakopoulos, and S. Hamodrakas, Evaluation of methods for predicting the topology of beta-barrel outer membrane proteins and a consensus prediction method, BMC Bioinformatics, vol.6, issue.1, p.7, 2005.
DOI : 10.1186/1471-2105-6-7

P. Martelli, P. Fariselli, A. Krogh, and R. Casadio, A sequence-profile-based HMM for predicting and discriminating ?? barrel membrane proteins, Bioinformatics, vol.18, issue.Suppl 1, pp.46-53, 2002.
DOI : 10.1093/bioinformatics/18.suppl_1.S46

H. Bigelow, D. Petrey, J. Liu, D. Przybylski, and B. Rost, Predicting transmembrane beta-barrels in proteomes. Nucleic acids research, pp.2566-2577, 2004.

A. Randall, J. Cheng, M. Sweredoski, and P. Baldi, TMBpro: secondary structure, ??-contact and tertiary structure prediction of transmembrane ??-barrel proteins, Bioinformatics, vol.24, issue.4, pp.513-520, 2008.
DOI : 10.1093/bioinformatics/btm548

H. Bigelow and B. Rost, PROFtmb: a web server for predicting bacterial transmembrane beta barrel proteins, 34 Web Server, pp.186-188, 2006.
DOI : 10.1093/nar/gkl262

J. Hu and C. Yan, A method for discovering transmembrane beta-barrel proteins in Gram-negative bacterial proteomes, Computational Biology and Chemistry, vol.32, issue.4, pp.298-301, 2008.
DOI : 10.1016/j.compbiolchem.2008.03.010

J. Waldispuhl, B. Berger, P. Clote, and J. Steyaert, transFold: a web server for predicting the structure and residue contacts of transmembrane beta-barrels, 34 Web Server, pp.189-193, 2006.
DOI : 10.1093/nar/gkl205

Y. Zhai, M. Saier, and . Jr, The ??-barrel finder (BBF) program, allowing identification of outer membrane ??-barrel proteins encoded within prokaryotic genomes, Protein Science, vol.4, issue.9, pp.2196-2207, 2002.
DOI : 10.1110/ps.0209002

F. Berven, K. Flikka, H. Jensen, and I. Eidhammer, BOMP: a program to predict integral ??-barrel outer membrane proteins encoded within genomes of Gram-negative bacteria, 32 Web Server, pp.394-399, 2004.
DOI : 10.1093/nar/gkh351

P. Bagos, T. Liakopoulos, I. Spyropoulos, and S. Hamodrakas, PRED-TMBB: a web server for predicting the topology of ??-barrel outer membrane proteins, 32 Web Server, pp.400-404, 2004.
DOI : 10.1093/nar/gkh417

K. Park, M. Gromiha, P. Horton, and M. Suwa, Discrimination of outer membrane proteins using support vector machines, Bioinformatics, vol.21, issue.23, pp.4223-4229, 2005.
DOI : 10.1093/bioinformatics/bti697

Y. Ou, M. Gromiha, S. Chen, and M. Suwa, TMBETADISC-RBF: Discrimination of -barrel membrane proteins using RBF networks and PSSM profiles, Computational Biology and Chemistry, vol.32, issue.3, pp.227-231, 2008.
DOI : 10.1016/j.compbiolchem.2008.03.002

A. Billion, R. Ghai, T. Chakraborty, and T. Hain, Augur--a computational pipeline for whole genome microbial surface protein prediction and classification, Bioinformatics, vol.22, issue.22, pp.2819-2820, 2006.
DOI : 10.1093/bioinformatics/btl466

M. Zhou, J. Boekhorst, C. Francke, and R. Siezen, LocateP: Genome-scale subcellular-location predictor for bacterial proteins, BMC Bioinformatics, vol.9, issue.1, p.173, 2008.
DOI : 10.1186/1471-2105-9-173

K. Choo and T. Tan, Ranganathan S: SPdb?a signal peptide database, BMC Bioinformatics, vol.6, issue.1, p.249, 2005.
DOI : 10.1186/1471-2105-6-249

S. Rey, M. Acab, J. Gardy, M. Laird, K. Lambert et al., PSORTdb: a protein subcellular localization database for bacteria, 33 Database, pp.164-168, 2005.
DOI : 10.1093/nar/gki027

S. Park, J. Yang, S. Jang, and S. Kim, Construction of Functional Interaction Networks through Consensus Localization Predictions of the Human Proteome, Journal of Proteome Research, vol.8, issue.7, pp.3367-3376, 2009.
DOI : 10.1021/pr900018z

D. Restrepo-montoya, C. Vizcaino, L. Nino, M. Ocampo, M. Patarroyo et al., Validating subcellular localization prediction tools with mycobacterial proteins, BMC Bioinformatics, vol.10, issue.1, p.134, 2009.
DOI : 10.1186/1471-2105-10-134

Y. Shen and G. Burger, 'Unite and conquer': enhanced prediction of protein subcellular localization by integrating multiple specialized tools, BMC Bioinformatics, vol.8, issue.1, p.420, 2007.
DOI : 10.1186/1471-2105-8-420

R. Gupta, The natural evolutionary relationships among prokaryotes. Critical reviews in microbiology, pp.111-131, 2000.

R. Rachel, I. Wyschkony, S. Riehl, and H. Huber, : Evidence for a novel outer membrane and for intracellular vesicle budding in an archaeon, Archaea, vol.181, issue.1, pp.9-18, 2002.
DOI : 10.1155/2002/307480

K. Rudd, EcoGene: a genome sequence database for Escherichia coli K-12, Nucleic Acids Research, vol.28, issue.1, pp.60-64, 2000.
DOI : 10.1093/nar/28.1.60

T. Itoh, T. Okayama, H. Hashimoto, J. Takeda, R. Davis et al., K-12 estimated from a comparison of the genome sequences between two different substrains, FEBS Letters, vol.397, issue.1-2, pp.72-76, 1999.
DOI : 10.1016/S0014-5793(99)00481-0

T. Durfee, R. Nelson, S. Baldwin, G. Plunkett, V. Burland et al., The Complete Genome Sequence of Escherichia coli DH10B: Insights into the Biology of a Laboratory Workhorse, Journal of Bacteriology, vol.190, issue.7, pp.1902597-2606, 2008.
DOI : 10.1128/JB.01695-07

K. Peterson and J. Mekalanos, Characterization of the Vibrio cholerae ToxR regulon: identification of novel genes involved in intestinal colonization, Infection and immunity, issue.11, pp.562822-2829, 1988.

H. Miyadai, K. Tanaka-masuda, S. Matsuyama, and H. Tokuda, Effects of lipoprotein overproduction on the induction of DegP (HtrA) involved in quality control in the Escherichia coli periplasm. The Journal of biological chemistry, pp.27939807-39813, 2004.

D. Thybert, S. Avner, C. Lucchetti-miganeh, A. Cheron, and F. Barloy-hubler, OxyGene: an innovative platform for investigating oxidative-response genes in whole prokaryotic genomes, BMC Genomics, vol.9, issue.1, p.637, 2008.
DOI : 10.1186/1471-2164-9-637

URL : https://hal.archives-ouvertes.fr/hal-00357551

M. Braunstein, B. Espinosa, J. Chan, J. Belisle, W. Jacobs et al., SecA2 functions in the secretion of superoxide dismutase A and in the virulence of Mycobacterium tuberculosis. Molecular microbiology, pp.453-464, 2003.

V. Goder and M. Spiess, Topogenesis of membrane proteins: determinants and dynamics, FEBS Letters, vol.12, issue.3, pp.87-93, 2001.
DOI : 10.1016/S0014-5793(01)02712-0

B. Martoglio and B. Dobberstein, Signal sequences: more than just greasy peptides, Trends in Cell Biology, vol.8, issue.10, pp.410-415, 1998.
DOI : 10.1016/S0962-8924(98)01360-9

L. Bingle, C. Bailey, and M. Pallen, Type VI secretion: a beginner's guide. Current opinion in microbiology, pp.3-8, 2008.

D. Anderson and O. Schneewind, A mRNA Signal for the Type III Secretion of Yop Proteins by Yersinia enterocolitica, Science, vol.278, issue.5340, pp.2781140-1143, 1997.
DOI : 10.1126/science.278.5340.1140

D. Anderson and O. Schneewind, Yersinia enterocolitica type III secretion: an mRNA signal that couples translation and secretion of YopQ, Molecular Microbiology, vol.165, issue.4, pp.1139-1148, 1999.
DOI : 10.1016/0378-1119(87)90365-9

T. Michiels, P. Wattiau, R. Brasseur, J. Ruysschaert, and G. Cornelis, Secretion of Yop proteins by Yersiniae, Infection and immunity, vol.58, issue.9, pp.2840-2849, 1990.

M. Lower and G. Schneider, Prediction of Type III Secretion Signals in Genomes of Gram-Negative Bacteria, PLoS ONE, vol.4, issue.6, p.5917, 2009.
DOI : 10.1371/journal.pone.0005917.s008

R. Arnold, S. Brandmaier, F. Kleine, P. Tischler, E. Heinz et al., Sequence-Based Prediction of Type III Secreted Proteins, PLoS Pathogens, vol.13, issue.5, p.1000376, 2009.
DOI : 10.1371/journal.ppat.1000376.s015

K. Hiller, A. Grote, M. Scheer, R. Munch, and D. Jahn, PrediSi: prediction of signal peptides and their cleavage positions, 32 Web Server, pp.375-379, 2004.
DOI : 10.1093/nar/gkh378

M. Gomi, M. Sonoyama, and S. Mitaku, High performance system for signal peptide prediction: SOSUIsignal, Chem-Bio Informatics Journal, vol.4, issue.4, pp.142-147, 2004.
DOI : 10.1273/cbij.4.142

S. Mitaku, T. Hirokawa, and T. Tsuji, Amphiphilicity index of polar amino acids as an aid in the characterization of amino acid preference at membrane-water interfaces, Bioinformatics, vol.18, issue.4, pp.608-616, 2002.
DOI : 10.1093/bioinformatics/18.4.608

D. Juretic, L. Zoranic, and D. Zucic, Basic Charge Clusters and Predictions of Membrane Protein Topology, Journal of Chemical Information and Computer Sciences, vol.42, issue.3, pp.620-632, 2002.
DOI : 10.1021/ci010263s

P. Bagos, T. Liakopoulos, and S. Hamodrakas, Finding beta-barrel outer membrane proteins with a Markov Chain Model, WSEAS Transactions on Biology and Biomedecine, vol.1, issue.2, pp.186-189, 2004.

M. Gromiha, S. Ahmad, and M. Suwa, TMBETA-NET: discrimination and prediction of membrane spanning ??-strands in outer membrane proteins, Nucleic Acids Research, vol.33, issue.Web Server, pp.164-167, 2005.
DOI : 10.1093/nar/gki367

A. Garrow, A. Agnew, and D. Westhead, TMB-Hunt: a web server to screen sequence sets for transmembrane ??-barrel proteins, Nucleic Acids Research, vol.33, issue.Web Server, pp.188-192, 2005.
DOI : 10.1093/nar/gki384

Z. Lu, D. Szafron, R. Greiner, P. Lu, D. Wishart et al., Predicting subcellular localization of proteins using machine-learned classifiers, Bioinformatics, vol.20, issue.4, pp.547-556, 2004.
DOI : 10.1093/bioinformatics/btg447

S. Matsuda, J. Vert, H. Saigo, N. Ueda, H. Toh et al., A novel representation of protein sequences for prediction of subcellular location using support vector machines, Protein Science, vol.451, issue.11, pp.2804-2813, 2005.
DOI : 10.1110/ps.051597405

URL : https://hal.archives-ouvertes.fr/hal-00433582

S. Hua and Z. Sun, Support vector machine approach for protein subcellular localization prediction, Bioinformatics, vol.17, issue.8, pp.721-728, 2001.
DOI : 10.1093/bioinformatics/17.8.721

B. Niu, Y. Jin, K. Feng, W. Lu, Y. Cai et al., Using AdaBoost for the prediction of subcellular location of prokaryotic and eukaryotic proteins, Molecular Diversity, vol.17, issue.5, pp.41-45, 2008.
DOI : 10.1007/s11030-008-9073-0

K. Imai, N. Asakawa, T. Tsuji, F. Akazawa, A. Ino et al., SOSUI-GramN: high performance prediction for sub-cellular localization of proteins in Gram-negative bacteria, Bioinformation, vol.2, issue.9, pp.417-421, 2008.
DOI : 10.6026/97320630002417

R. Horler, A. Butcher, N. Papangelopoulos, P. Ashton, and G. Thomas, EchoLOCATION: an in silico analysis of the subcellular locations of Escherichia coli proteins and comparison with experimentally derived locations, Bioinformatics, vol.25, issue.2, pp.163-166, 2009.
DOI : 10.1093/bioinformatics/btn596

S. Fernando, P. Selvarani, S. Das, K. Ch, K. Mondal et al., THGS: a web-based database of Transmembrane Helices in Genome Sequences, Nucleic Acids Research, vol.32, issue.90001, pp.32-125, 2004.
DOI : 10.1093/nar/gkh130

Z. Litou, P. Bagos, K. Tsirigos, T. Liakopoulos, and S. Hamodrakas, PREDICTION OF CELL WALL SORTING SIGNALS IN GRAM-POSITIVE BACTERIA WITH A HIDDEN MARKOV MODEL: APPLICATION TO COMPLETE GENOMES, Journal of Bioinformatics and Computational Biology, vol.06, issue.02, pp.387-401, 2008.
DOI : 10.1142/S0219720008003382

M. Remmert, D. Linke, A. Lupas, and J. Soding, HHomp--prediction and classification of outer membrane proteins, 37 Web Server, pp.446-451, 2009.
DOI : 10.1093/nar/gkp325

M. Saleh, M. Fillon, P. Brennan, and J. Belisle, Identification of putative exported/secreted proteins in prokaryotic proteomes, Gene, vol.269, issue.1-2, pp.195-204, 2001.
DOI : 10.1016/S0378-1119(01)00436-X

P. Bagos, K. Tsirigos, S. Plessas, T. Liakopoulos, and S. Hamodrakas, Prediction of signal peptides in archaea, Protein Engineering Design and Selection, vol.22, issue.1, pp.27-35, 2009.
DOI : 10.1093/protein/gzn064

M. Ikeda, M. Arai, T. Okuno, and T. Shimizu, TMPDB: a database of experimentally-characterized transmembrane topologies, Nucleic Acids Research, vol.31, issue.1, pp.406-409, 2003.
DOI : 10.1093/nar/gkg020

G. Tusnady, L. Kalmar, and I. Simon, TOPDB: topology data bank of transmembrane proteins, 36 Database, pp.234-239, 2008.
DOI : 10.1093/nar/gkm751

K. Menne, H. Hermjakob, and R. Apweiler, A comparison of signal sequence prediction methods using a test set of signal peptides, Bioinformatics, vol.16, issue.8, pp.741-742, 2000.
DOI : 10.1093/bioinformatics/16.8.741

P. Taylor, C. Toseland, T. Attwood, and D. Flower, LIPPRED: A web server for accurate prediction of lipoprotein signal sequences and cleavage sites, Bioinformation, vol.1, issue.5, pp.176-179, 2006.
DOI : 10.6026/97320630001176

P. Fariselli, G. Finocchiaro, and R. Casadio, SPEPlip: the detection of signal peptide and lipoprotein cleavage sites, Bioinformatics, vol.19, issue.18, pp.2498-2499, 2003.
DOI : 10.1093/bioinformatics/btg360

J. Bendtsen, L. Kiemer, A. Fausboll, and S. Brunak, Non-classical protein secretion in bacteria, BMC Microbiology, vol.5, issue.1, p.58, 2005.
DOI : 10.1186/1471-2180-5-58

H. Shen and K. Chou, Signal-3L: A 3-layer approach for predicting signal peptides, Biochemical and Biophysical Research Communications, vol.363, issue.2, pp.297-303, 2007.
DOI : 10.1016/j.bbrc.2007.08.140

K. Chou and H. Shen, Signal-CF: A subsite-coupled and window-fusing approach for predicting signal peptides, Biochemical and Biophysical Research Communications, vol.357, issue.3, pp.633-640, 2007.
DOI : 10.1016/j.bbrc.2007.03.162

K. Frank and M. Sippl, High-performance signal peptide prediction based on sequence alignment techniques, Bioinformatics, vol.24, issue.19, pp.2172-2176, 2008.
DOI : 10.1093/bioinformatics/btn422

Z. Szabo, A. Stahl, S. Albers, J. Kissinger, A. Driessen et al., Identification of Diverse Archaeal Proteins with Class III Signal Peptides Cleaved by Distinct Archaeal Prepilin Peptidases, Journal of Bacteriology, vol.189, issue.3, pp.772-778, 2007.
DOI : 10.1128/JB.01547-06

J. Hiss, E. Resch, A. Schreiner, M. Meissner, A. Starzinski-powitz et al., Domain Organization of Long Signal Peptides of Single-Pass Integral Membrane Proteins Reveals Multiple Functional Capacity, PLoS ONE, vol.102, issue.7, p.2767, 2008.
DOI : 10.1371/journal.pone.0002767.s003

S. Reynolds, L. Kall, M. Riffle, J. Bilmes, and W. Noble, Transmembrane Topology and Signal Peptide Prediction Using Dynamic Bayesian Networks, PLoS Computational Biology, vol.18, issue.11, p.1000213, 2008.
DOI : 10.1371/journal.pcbi.1000213.t008

H. Viklund and A. Elofsson, OCTOPUS: improving topology prediction by two-track ANN-based preference scores and an extended topological grammar, Bioinformatics, vol.24, issue.15, pp.1662-1668, 2008.
DOI : 10.1093/bioinformatics/btn221

H. Viklund, A. Bernsel, M. Skwark, and A. Elofsson, SPOCTOPUS: a combined predictor of signal peptides and membrane protein topology, Bioinformatics, vol.24, issue.24, pp.2928-2929, 2008.
DOI : 10.1093/bioinformatics/btn550

H. Shen and J. Chou, MemBrain: Improving the Accuracy of Predicting Transmembrane Helices, PLoS ONE, vol.301, issue.6, p.2399, 2008.
DOI : 10.1371/journal.pone.0002399.s004

M. Cserzo, E. Wallin, I. Simon, G. Von-heijne, and A. Elofsson, Prediction of transmembrane alpha-helices in prokaryotic membrane proteins: the dense alignment surface method, Protein Engineering Design and Selection, vol.10, issue.6, pp.673-676, 1997.
DOI : 10.1093/protein/10.6.673

P. Bagos, T. Liakopoulos, and S. Hamodrakas, Algorithms for incorporating prior topological information in HMMs: application to transmembrane proteins, BMC Bioinformatics, vol.7, issue.1, p.189, 2006.
DOI : 10.1186/1471-2105-7-189

A. Lo, H. Chiu, T. Sung, P. Lyu, and W. Hsu, Enhanced Membrane Protein Topology Prediction Using a Hierarchical Classification Method and a New Scoring Function, Journal of Proteome Research, vol.7, issue.2, pp.487-496, 2008.
DOI : 10.1021/pr0702058

H. Zhou and Y. Zhou, Predicting the topology of transmembrane helical proteins using mean burial propensity and a hidden-Markov-model-based method, Protein Science, vol.49, issue.7, pp.1547-1555, 2003.
DOI : 10.1110/ps.0305103

E. Pashou, Z. Litou, T. Liakopoulos, and S. Hamodrakas, waveTM: waveletbased transmembrane segment prediction, Silico Biol, vol.4, issue.2, pp.127-131, 2004.

C. Pasquier, V. Promponas, G. Palaios, J. Hamodrakas, and S. Hamodrakas, A novel method for predicting transmembrane segments in proteins based on a statistical analysis of the SwissProt database: the PRED-TMR algorithm, Protein Engineering Design and Selection, vol.12, issue.5, pp.381-385, 1999.
DOI : 10.1093/protein/12.5.381

URL : https://hal.archives-ouvertes.fr/hal-00170724

P. Peris, D. Lopez, and M. Campos, IgTM: An algorithm to predict transmembrane domains and topology in proteins, BMC Bioinformatics, vol.9, issue.1, p.367, 2008.
DOI : 10.1186/1471-2105-9-367

A. Bernsel, H. Viklund, A. Hennerdal, and A. Elofsson, TOPCONS: consensus prediction of membrane protein topology, 37 Web Server, pp.465-468, 2009.
DOI : 10.1093/nar/gkp363

H. Zhou, C. Zhang, S. Liu, and Y. Zhou, Web-based toolkits for topology prediction of transmembrane helical proteins, fold recognition, structure and binding scoring, folding-kinetics analysis and comparative analysis of domain combinations, Nucleic Acids Research, vol.33, issue.Web Server, pp.193-197, 2005.
DOI : 10.1093/nar/gki360

M. Arai, H. Mitsuke, M. Ikeda, J. Xia, T. Kikuchi et al., ConPred II: a consensus prediction method for obtaining transmembrane topology models with high reliability, 32 Web Server, pp.390-393, 2004.
DOI : 10.1093/nar/gkh380

D. Jones, Improving the accuracy of transmembrane protein topology prediction using evolutionary information, Bioinformatics, vol.23, issue.5, pp.538-544, 2007.
DOI : 10.1093/bioinformatics/btl677

R. Adamczak, A. Porollo, and J. Meller, Combining prediction of secondary structure and solvent accessibility in proteins, Proteins: Structure, Function, and Bioinformatics, vol.10, issue.3, pp.467-475, 2005.
DOI : 10.1002/prot.20441

M. Ganapathiraju, N. Balakrishnan, R. Reddy, and J. Klein-seetharaman, Transmembrane helix prediction using amino acid property features and latent semantic analysis, BMC Bioinformatics, vol.9, issue.Suppl 1, p.4, 2008.
DOI : 10.1186/1471-2105-9-S1-S4

D. Jones, Protein secondary structure prediction based on position-specific scoring matrices, Journal of Molecular Biology, vol.292, issue.2, pp.195-202, 1999.
DOI : 10.1006/jmbi.1999.3091

K. Bryson, L. Mcguffin, R. Marsden, J. Ward, J. Sodhi et al., Protein structure prediction servers at University College London, Nucleic Acids Research, vol.33, issue.Web Server, pp.36-38, 2005.
DOI : 10.1093/nar/gki410

URL : http://doi.org/10.1093/nar/gki410

C. Combet, C. Blanchet, C. Geourjon, and G. Deleage, NPS@: Network Protein Sequence Analysis, Trends in Biochemical Sciences, vol.25, issue.3, pp.147-150, 2000.
DOI : 10.1016/S0968-0004(99)01540-6

URL : https://hal.archives-ouvertes.fr/hal-00313012

K. Karplus, HMM-based protein structure prediction, 37 Web Server, pp.492-497, 2009.

G. Pollastri and A. Mclysaght, Porter: a new, accurate server for protein secondary structure prediction, Bioinformatics, vol.21, issue.8, pp.1719-1720, 2005.
DOI : 10.1093/bioinformatics/bti203

R. Kahsay, G. Gao, and L. Liao, An improved hidden Markov model for transmembrane protein detection and topology prediction and its applications to complete genomes, Bioinformatics, vol.21, issue.9, pp.1853-1858, 2005.
DOI : 10.1093/bioinformatics/bti303

K. Lin, V. Simossis, W. Taylor, and J. Heringa, A simple and fast secondary structure prediction method using hidden neural networks, Bioinformatics, vol.21, issue.2, pp.152-159, 2005.
DOI : 10.1093/bioinformatics/bth487

K. Chou and H. Shen, MemType-2L: A Web server for predicting membrane proteins and their types by incorporating evolution information through Pse-PSSM, Biochemical and Biophysical Research Communications, vol.360, issue.2, pp.339-345, 2007.
DOI : 10.1016/j.bbrc.2007.06.027

C. Yu, Y. Chen, C. Lu, and J. Hwang, Prediction of protein subcellular localization, Proteins: Structure, Function, and Bioinformatics, vol.63, issue.3, pp.643-651, 2006.
DOI : 10.1002/prot.21018

E. Su, H. Chiu, A. Lo, J. Hwang, T. Sung et al., Protein subcellular localization prediction based on compartment-specific features and structure conservation, BMC Bioinformatics, vol.8, issue.1, p.330, 2007.
DOI : 10.1186/1471-2105-8-330

M. Bhasin, A. Garg, and G. Raghava, PSLpred: prediction of subcellular localization of bacterial proteins, Bioinformatics, vol.21, issue.10, pp.2522-2524, 2005.
DOI : 10.1093/bioinformatics/bti309

K. Chou and H. Shen, Large-Scale Predictions of Gram-Negative Bacterial Protein Subcellular Locations, Journal of Proteome Research, vol.5, issue.12, pp.3420-3428, 2006.
DOI : 10.1021/pr060404b

H. Shen and K. Chou, Gpos-PLoc: an ensemble classifier for predicting subcellular localization of Gram-positive bacterial proteins, Protein Engineering Design and Selection, vol.20, issue.1, pp.39-46, 2007.
DOI : 10.1093/protein/gzl053

R. Nair and B. Rost, Mimicking Cellular Sorting Improves Prediction of Subcellular Localization, Journal of Molecular Biology, vol.348, issue.1, pp.85-100, 2005.
DOI : 10.1016/j.jmb.2005.02.025

P. Jia, Z. Qian, Z. Zeng, Y. Cai, and Y. Li, Prediction of subcellular protein localization based on functional domain composition, Biochemical and Biophysical Research Communications, vol.357, issue.2, pp.366-370, 2007.
DOI : 10.1016/j.bbrc.2007.03.139

M. Rashid, S. Saha, and G. Raghava, Support Vector Machine-based method for predicting subcellular localization of mycobacterial proteins using evolutionary information and motifs, BMC Bioinformatics, vol.8, issue.1, p.337, 2007.
DOI : 10.1186/1471-2105-8-337

J. Setubal, M. Reis, J. Matsunaga, and D. Haake, Lipoprotein computational prediction in spirochaetal genomes, Microbiology, vol.152, issue.1, pp.113-121, 2006.
DOI : 10.1099/mic.0.28317-0

S. Montgomerie, J. Cruz, S. Shrivastava, D. Arndt, M. Berjanskii et al., PROTEUS2: a web server for comprehensive protein structure prediction and structure-based annotation, 36 Web Server, pp.202-209, 2008.
DOI : 10.1093/nar/gkn255

C. Pasquier and S. Hamodrakas, An hierarchical artificial neural network system for the classification of transmembrane proteins, Protein Engineering Design and Selection, vol.12, issue.8, pp.631-634, 1999.
DOI : 10.1093/protein/12.8.631

URL : https://hal.archives-ouvertes.fr/hal-00170718

P. Taylor, T. Attwood, and D. Flower, BPROMPT: a consensus server for membrane protein prediction, Nucleic Acids Research, vol.31, issue.13, pp.313698-3700, 2003.
DOI : 10.1093/nar/gkg554

T. Liakopoulos, C. Pasquier, and S. Hamodrakas, A novel tool for the prediction of transmembrane protein topology based on a statistical analysis of the SwissProt database: the OrienTM algorithm, Protein Engineering Design and Selection, vol.14, issue.6, pp.387-390, 2001.
DOI : 10.1093/protein/14.6.387

URL : https://hal.archives-ouvertes.fr/hal-01154852

G. Raghava, APSSP2: A combination method for protein secondary structure prediction based on neural network and example based learning, p.132, 2002.

V. Simossis and J. Heringa, PRALINE: a multiple sequence alignment toolbox that integrates homology-extended and secondary structure information, Nucleic Acids Research, vol.33, issue.Web Server, pp.289-294, 2005.
DOI : 10.1093/nar/gki390

M. Lomize, A. Lomize, I. Pogozheva, and H. Mosberg, OPM: Orientations of Proteins in Membranes database, Bioinformatics, vol.22, issue.5, pp.623-625, 2006.
DOI : 10.1093/bioinformatics/btk023

S. Jayasinghe, K. Hristova, and S. White, MPtopo: A database of membrane protein topology, Protein Science, vol.10, issue.2, pp.455-458, 2001.
DOI : 10.1110/ps.43501

G. Tusnady, Z. Dosztanyi, and I. Simon, PDB_TM: selection and membrane localization of transmembrane proteins in the protein data bank, 33 Database, pp.275-278, 2005.
DOI : 10.1093/nar/gki002

M. Gromiha, Y. Yabuki, S. Kundu, S. Suharnan, and M. Suwa, TMBETA-GENOME: database for annotated ??-barrel membrane proteins in genomic sequences, Database, pp.35-314, 2007.
DOI : 10.1093/nar/gkl805

B. Rost, G. Yachdav, and J. Liu, The PredictProtein server, 32 Web Server, pp.321-326, 2004.

H. Yun, J. Lee, J. Jeong, J. Chung, J. Park et al., EcoProDB: the Escherichia coli protein database, Bioinformatics, vol.23, issue.18, pp.2501-2503, 2007.
DOI : 10.1093/bioinformatics/btm351

R. Nair and B. Rost, LOCnet and LOCtarget: sub-cellular localization for structural genomics targets, 32 Web Server, pp.517-521, 2004.
DOI : 10.1093/nar/gkh441

S. Zhang, X. Xia, J. Shen, Y. Zhou, and Z. Sun, DBMLoc: a Database of proteins with multiple subcellular localizations, BMC Bioinformatics, vol.9, issue.1, p.127, 2008.
DOI : 10.1186/1471-2105-9-127

. Goudenège, CoBaltDB: Complete bacterial and archaeal orfeomes subcellular localization database and associated resources, BMC Microbiology, vol.10, issue.1, p.88, 2010.
DOI : 10.1186/1471-2180-10-88