An “algebraic” reconstruction of piecewise-smooth functions from integral measurements

Abstract : This paper presents some results on a well-known problem in Algebraic Signal Sampling and in other areas of applied mathematics: reconstruction of piecewise-smooth functions from their integral measurements (like moments, Fourier coefficients, Radon transform, etc.). Our results concern reconstruction (from the moments) of signals in two specific classes: linear combinations of shifts of a given function, and “piecewise D-finite functions” which satisfy on each continuity interval a linear differential equation with polynomial coefficients.
Type de document :
Communication dans un congrès
Laurent Fesquet and Bruno Torrésani. SAMPTA'09, May 2009, Marseille, France. Special Session on sampling using finite rate of innovation principles, 2009
Liste complète des métadonnées

https://hal.archives-ouvertes.fr/hal-00452200
Contributeur : Bruno Torrésani <>
Soumis le : lundi 1 février 2010 - 17:14:18
Dernière modification le : mercredi 3 février 2010 - 18:25:48
Document(s) archivé(s) le : vendredi 18 juin 2010 - 18:04:14

Fichier

Sampta09_SS10_80.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

  • HAL Id : hal-00452200, version 1

Collections

Citation

Dima Batenkov, Niv Sarig, Yosef Yomdin. An “algebraic” reconstruction of piecewise-smooth functions from integral measurements. Laurent Fesquet and Bruno Torrésani. SAMPTA'09, May 2009, Marseille, France. Special Session on sampling using finite rate of innovation principles, 2009. 〈hal-00452200〉

Partager

Métriques

Consultations de la notice

67

Téléchargements de fichiers

75