Sharp adaptive estimation for d-dimensional classes

Abstract : In this paper, our aim is to estimate an anisotropic function in the framework of the Gaussian white noise model. We suppose that the function belongs to an unknown d-dimensional Holder class. We evaluate the performance of an estimator by the sup-norm risk. We find the exact asymptotics of the adaptive minimax risk and construct asymptotically adaptive estimators.
Document type :
Preprints, Working Papers, ...
Liste complète des métadonnées

Cited literature [13 references]  Display  Hide  Download

https://hal.archives-ouvertes.fr/hal-00160734
Contributor : Karine Bertin <>
Submitted on : Friday, July 6, 2007 - 10:14:32 PM
Last modification on : Saturday, July 7, 2007 - 8:52:18 AM
Document(s) archivé(s) le : Monday, September 24, 2012 - 10:56:45 AM

File

Publi4bertin.pdf
Files produced by the author(s)

Identifiers

  • HAL Id : hal-00160734, version 1

Collections

Citation

Karine Bertin. Sharp adaptive estimation for d-dimensional classes. 2005. ⟨hal-00160734⟩

Share

Metrics

Record views

115

Files downloads

63