When Nearer is Better

Abstract : We define a numerical "nearer is better" truth value that can be computed or estimated for all functions on a given definition space. The set of all these functions can be then partitioned into three subsets: the ones for which this truth value is positive, the ones for which it is negative, and the ones for which is is null. We show that most of classical functions belong to the first subset, as the second one is useful to design problems that are deceptive for most of optimisation algorithms. Also on these subset the No Free Lunch Theorem does not hold. Therefore it may exist a best algorithm, and we suggest a way to design it for the first one.
Type de document :
Pré-publication, Document de travail
19 pages. 2007
Liste complète des métadonnées


https://hal.archives-ouvertes.fr/hal-00137320
Contributeur : Maurice Clerc <>
Soumis le : mercredi 6 juin 2007 - 09:16:23
Dernière modification le : lundi 21 mars 2016 - 11:31:38
Document(s) archivé(s) le : vendredi 25 novembre 2016 - 16:24:19

Fichier

NisBetter2.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

  • HAL Id : hal-00137320, version 2

Collections

Citation

Maurice Clerc. When Nearer is Better. 19 pages. 2007. <hal-00137320v2>

Partager

Métriques

Consultations de
la notice

262

Téléchargements du document

105