When Nearer is Better

Abstract : We define a numerical "nearer is better" truth value that can be computed or estimated for all functions on a given definition space. The set of all these functions can be then partitioned into three subsets: the ones for which this truth value is positive, the ones for which it is negative, and the ones for which is is null. We show that most of classical functions belong to the first subset, as the second one is useful to design problems that are deceptive for most of optimisation algorithms. Also on these subset the No Free Lunch Theorem does not hold. Therefore it may exist a best algorithm, and we suggest a way to design it for the first one.
Type de document :
Pré-publication, Document de travail
19 pages. 2007
Liste complète des métadonnées

Littérature citée [11 références]  Voir  Masquer  Télécharger

Contributeur : Maurice Clerc <>
Soumis le : mercredi 6 juin 2007 - 09:16:23
Dernière modification le : lundi 21 mars 2016 - 11:31:38
Document(s) archivé(s) le : vendredi 25 novembre 2016 - 16:24:19


Fichiers produits par l'(les) auteur(s)


  • HAL Id : hal-00137320, version 2



Maurice Clerc. When Nearer is Better. 19 pages. 2007. 〈hal-00137320v2〉



Consultations de la notice


Téléchargements de fichiers