Skip to Main content Skip to Navigation
Journal articles

Canonical structure of minimal varying $\Lambda$ theories

Abstract : Minimal varying $\Lambda$ theories are defined by an action built from the Einstein-Cartan-Holst first order action for gravity with the cosmological constant $\Lambda$ as an independent scalar field, and supplemented by the Euler and Pontryagin densities multiplied by $1/\Lambda$. We identify the canonical structure of these theories which turn out to represent an example of irregular systems. We find five degrees of freedom on generic backgrounds and for generic values of parameters, whereas if the parameters satisfy a certain condition (which includes the most commonly considered Euler case) only three degrees of freedom remain. On de Sitter-like backgrounds the canonical structure changes, and due to an emergent conformal symmetry one degree of freedom drops from the spectrum. We also analyze the self-dual case with an holomorphic action depending only on the self-dual part of the connection. In this case we find two (complex) degrees of freedom, and further discuss the Kodama state, the restriction to de Sitter background and the effect of reality conditions.
Complete list of metadata
Contributor : L2c Aigle Connect in order to contact the contributor
Submitted on : Tuesday, April 13, 2021 - 4:53:07 PM
Last modification on : Friday, October 22, 2021 - 3:02:18 PM

Links full text




Sergey Alexandrov, Simone Speziale, Tom Zlosnik. Canonical structure of minimal varying $\Lambda$ theories. Classical and Quantum Gravity, IOP Publishing, 2021, 38 (17), pp.175011. ⟨10.1088/1361-6382/ac1852⟩. ⟨hal-03197323⟩



Record views