1092 articles – 619 Notices  [english version]
HAL : hal-00592370, version 1

Fiche détaillée  Récupérer au format
Statistics of geometric random simplicial complexes
Eduardo Ferraz 1, Anais Vergne 1
(12/05/2011)

Given a Poisson process on a d-dimensional torus, its random geometric simplicial complex is the complex whose vertices are the points of the Poisson process and simplices are given by the Cech complex associated to the coverage of each point. We compute explicitly the variance of number of k-simplices as well as the variance of the Euler characteristic. The solution strategy used to compute the second moment can be used to compute analytically the n-th moment. We apply concentration inequalities on the results of homology and the moments of the Euler's characteristics to find bounds for the coverage probability.
1 :  Laboratoire Traitement et Communication de l'Information [Paris] (LTCI)
Télécom ParisTech – CNRS : UMR5141
Mathématiques/Probabilités
Poisson point process – Simplicial complexes – Concentration inequalities – Betti numbers – Euler characteristic
Liste des fichiers attachés à ce document : 
PDF
moments.pdf(397.2 KB)