Toxic Electrophiles Induce Expression of the Multidrug Efflux Pump MexEF-OprN in Pseudomonas aeruginosa through a Novel Transcriptional Regulator, CmrA - Archive ouverte HAL Accéder directement au contenu
Article Dans Une Revue Antimicrobial Agents and Chemotherapy Année : 2017

Toxic Electrophiles Induce Expression of the Multidrug Efflux Pump MexEF-OprN in Pseudomonas aeruginosa through a Novel Transcriptional Regulator, CmrA

Résumé

The multidrug efflux system MexEF-OprN is produced at low levels in wild-type strains of Pseudomonas aeruginosa However, in so-called nfxC mutants, mutational alteration of the gene mexS results in constitutive overexpression of the pump, along with increased resistance of the bacterium to chloramphenicol, fluoroquinolones, and trimethoprim. In this study, analysis of in vitro-selected chloramphenicol-resistant clones of strain PA14 led to the identification of a new class of MexEF-OprN-overproducing mutants (called nfxC2) exhibiting alterations in an as-yet-uncharacterized gene, PA14_38040 (homolog of PA2047 in strain PAO1). This gene is predicted to encode an AraC-like transcriptional regulator and was called cmrA (for chloramphenicol resistance activator). In nfxC2 mutants, the mutated CmrA increases its proper gene expression and upregulates the operon mexEF-oprN through MexS and MexT, resulting in a multidrug resistance phenotype without significant loss in bacterial virulence. Transcriptomic experiments demonstrated that CmrA positively regulates a small set of 11 genes, including PA14_38020 (homolog of PA2048), which is required for the MexS/T-dependent activation of mexEF-oprN PA2048 codes for a protein sharing conserved domains with the quinol monooxygenase YgiN from Escherichia coli Interestingly, exposure of strain PA14 to toxic electrophilic molecules (glyoxal, methylglyoxal, and cinnamaldehyde) strongly activates the CmrA pathway and upregulates MexEF-OprN and, thus, increases the resistance of P. aeruginosa to the pump substrates. A picture emerges in which MexEF-OprN is central in the response of the pathogen to stresses affecting intracellular redox homeostasis.

Domaines

Bactériologie

Dates et versions

hal-01685302 , version 1 (16-01-2018)

Identifiants

Citer

Paulo Juarez, Katy Jeannot, Patrick Plesiat, Catherine Llanes. Toxic Electrophiles Induce Expression of the Multidrug Efflux Pump MexEF-OprN in Pseudomonas aeruginosa through a Novel Transcriptional Regulator, CmrA. Antimicrobial Agents and Chemotherapy, 2017, 61 (8), ⟨10.1128/AAC.00585-17⟩. ⟨hal-01685302⟩
75 Consultations
0 Téléchargements

Altmetric

Partager

Gmail Facebook X LinkedIn More