Accessible volume in quenched-annealed mixtures of hard spheres: a geometric decomposition - Archive ouverte HAL Accéder directement au contenu
Article Dans Une Revue Molecular Physics Année : 2011

Accessible volume in quenched-annealed mixtures of hard spheres: a geometric decomposition

Résumé

Model systems in which fluid particles move in a disordered matrix of immobile obstacles have been found to be a reasonable representation of a colloidal fluid confined in a disordered porous medium. For systems consisting of hard-sphere particles, the obstacle matrix partitions the space available to the fluid particles into voids of finite volume ("traps") and a percolating void that extends over the entire volume. This geometric distinction plays a key role for the dynamic properties of the confined fluid: while its particles are not able to escape from traps, in the percolating void they can propagate infinitely far. We present a geometric method, based on a Delaunay decomposition, to identify the two different kinds of voids in an arbitrary matrix configuration of finite size under periodic boundary conditions. We subsequently apply a rastering technique, which enables us to statistically characterize the structure of the voids. We investigate the specific case of a quenched-annealed mixture of identical hard spheres, for which, among others, we accurately determine the matrix packing fraction at which the percolation transition of the voids takes place.

Mots clés

Fichier principal
Vignette du fichier
PEER_stage2_10.1080%2F00268976.2011.556579.pdf (453.18 Ko) Télécharger le fichier
Origine : Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-00692129 , version 1 (28-04-2012)

Identifiants

Citer

Jan Kurzidim, Gerhard Kahl. Accessible volume in quenched-annealed mixtures of hard spheres: a geometric decomposition. Molecular Physics, 2011, 109 (07-10), pp.1331-1342. ⟨10.1080/00268976.2011.556579⟩. ⟨hal-00692129⟩

Collections

PEER
143 Consultations
96 Téléchargements

Altmetric

Partager

Gmail Facebook X LinkedIn More