déposer
version française rss feed
HAL : hal-00555495, version 1

Fiche détaillée  Récupérer au format
Journal of the American Ceramic Society 93, 5 (2010) 1484-1493
A coupled nanoindentation/SEM-EDS study on low water/cement ratio Portland cement paste: Evidence for C-S-H/Ca(OH)2 nanocomposites
Jeffrey J. Chen ( ) 1, Luca Sorelli 1, Matthieu Vandamme 2, 3, Franz-Josef Ulm 2, Gilles Chanvillard 1
(2010)

A low water/cement ratio (w/c=0.20) hydrated Portland cement paste was analyzed by grid-indentation coupled with ex situ scanning electron microscope-energy-dispersive X-ray spectra (SEM-EDS) analysis at each indentation point. Because finite element and Monte-Carlo simulations showed that the microvolumes probed by each method are of comparable size (approximately 2 μm), the mechanical information provided by nanoindentation was directly comparable to the chemical information provided by SEM-EDS. This coupled approach provided the opportunity to determine whether the local indentation response was a result of a single- or a multiphase response--the latter being shown predominant in the highly concentrated w/c=0.20 hydrated cement paste. Results indicate that, in the selected microvolumes where C-S-H and nanoscale Ca(OH)2 (CH) are present, increasing fractions of CH increase the local indentation modulus (and hardness), yielding values above those reported for high-density (HD) C-S-H. Micromechanical analyses show that C-S-H and CH are associated, not merely as a simple biphase mixture, but as an intimate nanocomposite where nanoscale CH reinforces C-S-H by partially filling the latter's gel pores. The paper discusses the mechanism of forming the C-S-H/CH nanocomposite, as well as the impact of nanocomposites on various macroscopic properties of concrete (e.g., shrinkage, expansion). On a general level, this study illustrates how a coupled nanoindentation/X-ray microanalysis/micromechanics approach can provide otherwise inaccessible information on the nanomechanical properties of highly heterogeneous composites with intermixing at length scales smaller than the stress field in a nanoindentation experiment.
1 :  Lafarge Research Centre
Lafarge
2 :  Massachusetts Institute of technology [Cambridge] (MIT)
Massachusetts Institute of Technology (MIT)
3 :  Laboratoire Navier (NAVIER)
Université Paris Est (UPE) – École des Ponts ParisTech (ENPC) – CNRS : UMR8205 – IFSTTAR
Multi-échelle
Physique/Mécanique/Mécanique des matériaux

Sciences de l'ingénieur/Mécanique/Mécanique des matériaux
Liste des fichiers attachés à ce document : 
PDF
JACERS-26693-With-Figures.pdf(931.4 KB)

tous les articles de la base du CCSd...
tous les articles de la base du CCSd...
tous les articles de la base du CCSd...
tous les articles de la base du CCSd...
tous les articles de la base du CCSd...
tous les articles de la base du CCSd...
tous les articles de la base du CCSd...
tous les articles de la base du CCSd...
tous les articles de la base du CCSd...
tous les articles de la base du CCSd...
tous les articles de la base du CCSd...
tous les articles de la base du CCSd...
tous les articles de la base du CCSd...
tous les articles de la base du CCSd...
tous les articles de la base du CCSd...
tous les articles de la base du CCSd...
tous les articles de la base du CCSd...
tous les articles de la base du CCSd...
tous les articles de la base du CCSd...
tous les articles de la base du CCSd...
tous les articles de la base du CCSd...
tous les articles de la base du CCSd...
tous les articles de la base du CCSd...
tous les articles de la base du CCSd...
tous les articles de la base du CCSd...
tous les articles de la base du CCSd...
tous les articles de la base du CCSd...
tous les articles de la base du CCSd...
tous les articles de la base du CCSd...